《论概率》迄今为止,代数沿袭已超过哲学家对其发展过程更深刻的探索,以至于概率往往被人认为是数学而不是逻辑。因此,《论概率》就概率的逻辑性展开阐述,书中有很多新颖的、创造性的理论,并有针对性地提出概率的系统性理论,以希望得到得到大家的指正和补充。
是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选教材。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。 本书内容相当精练,结构简单明了,这也是Rudin著作的一大特色。 与其说这是一部教科书,不如说这是一部字典。
本书揭开趣味游戏、艺术设计和日常生活中的数学密码,通过新颖话题和精美图示展现算术与几何中隐藏的妙趣,从最简单的数学原理走入算法的精彩世界,展现算法破解数学谜题的无穷威力。本书适合所有数学爱好者阅读。
《模糊集理论及其应用》系统介绍了模糊集理论及其应用的基本知识和研究方法.全书共分三个部分。部分详细介绍模糊集合的基本理论;第二部分系统介绍了模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与预测、模糊规划、模糊概率和模糊统计等研究领域的基本原理、研究方法及其应用程序;第三部分介绍模糊推理的基本理论与算法,以及模糊控制系统的基本原理。 《模糊集理论及其应用》可作为高等院校数学类本科生,以及经济类、管理类、机械类、计算机科学类、信息科学类等专业高年级本科生和研究生的教材,也可作为工程技术人员的参考书。
概率论与数理统计是大学理工科的主要基础课程之一,也是硕士研究生入学考试的一门重要课程。编写本书的目的是帮助读者正确理解和掌握一些基本概念与解题方法以提高学习效率,并为学生提供一份课外复习资料。蒋家尚主编的这本《概率论与数理统计习题课教程》的内容体系参照了浙江大学盛骤等编写的《概率论与数理统计》,适用于各类各层次的概率论与数理统计学习者,对报考硕士研究生的读者亦有的帮助,也可作为教师的教学参考用书。
《开来学于今:复杂性科学纵横论》按照作者的观点,复杂性科学并非一门学科,而是一个庞大学科群,代表整个科学作为系统的一种新的历史形态。所以,作为一本论述复杂性科学的书,不能像信息科学或控制理论那样阐释它的基本概念,建立理论框架,只能是总论性质的,即从科学、科学学、科学哲学、科学史等不同角度探讨复杂性科学蕴育和产生的社会背景、历史条件、发展现状、存在问题和可能走向,除了基本概念的阐释,更应从它的认识论、方法论、逻辑工具、思维方式等方面对一些争论和热点问题展开论述。故名之日纵横论,或日概览,概略观览是也。虽为概览,却也耗尽了我这几年的精力。效果如何,敬候阅者批评。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《过程基础(原书第2版)》包括离散时间Markov链、Poisson过程、更新过程、连续时间Markov链、鞅和金融数学六章内容,涵盖了过程的核心知识点,涉及大量较新应用,书中内容完全以应用为导向,不涉及高深的理论证明或数学推导,极富思想性作者力求通过展示过程的实际应用来让学生学习这门学科,因此书中有大量的例子,还有200多道习题来加深读者对内容的理解。
本书是“大学数学的内容、方法与技巧丛书”之一,是大学生学习概率论与数理统计的优秀辅导书和报考研究生的参考书,更是有志于掌握概率论与数理统计方法的读者的一本极好的指导书。 本书从*关于《概率论与数理统计课程的教学要求》与《硕士研究生入学考试数学考试大纲》出发,并略有提高地按章节对各个问题的内容、方法与技巧进行了归纳提高、释疑解难、分析演绎,以帮助读者理解和掌握概率论与数理统计方法。 本书内容包括*事件与概率、*变量及其概率分布、多微*变量及其分布、*变量的数字特征、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、方差分析与回归分析等,还附有实行全国硕士研究生入学统一考试以来的概率论与数理统计试题的解答,提供给考研读者作为参考。 希望本书能成为读者的良师益友,
张瑜、努尔古丽 艾力、李新鹏、康婷编*的这本《农科概率论与数理统计习题集》是参考苏金梅教授、德娜教授等主编的《概率论与数理统计》的内容次序编写的。本书分为概率论和数理统计两部分内容,包括*事件及其概率、*变量及其分布概率、多维*变量及其概率分布、*变量的数据特征、大数定理与中心*限定理、数理统计基础知识、方差分析与回归分析、假设检验等习题。本习题集适合高等院校的农科本科生使用。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书.
本书内容按现行较为通行的该课程大学教材知识范围分章设练习题、习题解答两部分,练习题分为解答题、选择题与填空题三种题型(部分章节除外)。 习题编选力求由浅入深、典型,解答力求简洁,不刻意追求解答的完整。并精选在科学技术和生产上应用性较强的相关问题。 本书可作为高职高专学生和本科学生学习本课程之用,亦可作为教学参考之用。
本书是高等农林院校理科基础课程教学指导委员会示范教材《概率论与数理统计》(吴坚、张录达主编)的配套辅导教材,按照“基础课教指委”新制定的教学基本要求进行编写。 本书共十章辅导内容。内容包括:*事件与概率、条件概率与独立性、一维*变量及其分布、多维*变量及其分布、*变量的数字特征、大数定律和中心极限定理、数理统计的一些基本概念、参数估计、假设检验、方差分析与回归分析。 本辅导教材可作为高等农林院校本科学生学习《概率论与数理统计》的同步辅导用书和学生考研前的复习指导,亦可作为教师教授该课程的教学参考用书。
本书是编者总结多年的教学经验和教学研究成果、参考外若干教材,对《微积分教程》进行认真修订而成的。本书概念和原理的表述科学、准确、清晰、平易,语言流畅。例题和习题重视基础训练,丰富且有台阶、有跨度。为了方便教学与自学,在附录中给出了习题答案与补充题的提示与解答,并且补充了微积分概念和术语的索引。另外,在附录A中,按照“发现—猜测—验证—证明”的模式,指导读者以数学软件Mathematica为辅助工具,通过理论、数值和图形各方面的分析研究寻找问题的解答。这些问题紧密结合微积分教学和训练的基本要求,有助于培养学生分析和解决问题的能力。 本书分为上、下两册。上册包括实数和函数的基本概念和性质,极限理论和连续函数,一元函数微积分学,数项级数与函数项级数。下册包括多元函数微分学及其应用,重积分,曲线
内容提要本书以适应统计学教学与统计实践为宗旨,系统地阐述了统计的基本理论、基本知识和基本方法。本书系统性强,结构严谨、布局合理、统计理论与统计实践紧密结合;力求简明易懂,使读者易学易用;力求体现统计知识的整合性、综合性、系统性;力求体系和内容有所突破和创新。全书共15章,包括总论、统计计量、统计资料搜集、统计资料整理、统计比较分析、数据分布特征测度、时间数列分析、统计指数、概率与概率分布、抽样推断、假设检验、方差分析、相关与回归分析、平衡数列分析和空间数列分析等,基本上涵盖了统计学学科体系的主要构成要素。
本书是《大学数学学习方法》丛书之一,是学习概率论与数理统计课程的优秀辅导书,也是大学生报考研究生的参考书。本书按照《概率论与数理统计课程教学大纲》和《硕士研究生入学统一考试数学考试大纲》编写,对概率论与数理统计课程学习中的疑难问题作了详尽、全面的分析解答,对解题方法与技巧作了演绎讲解、归纳评点,读者可以从中领受到概率统计思想的精髓和方法技巧。本书还汇集了历年硕士研究生入学考试中概率论与数理统计试题的解答,读者可以由此了解研究生入学考试对概率统计课程的要求、考点与动向。
关静、张玉环、史道济主编的《应用数理统计( 第2版普通高等教育十一五***规划教材)》是普通 高等教育 十一五 ***规划教材,共分7章,系统 介绍数理统计的基本内容。**章阐述数理统计的基本 概念;第2~4章是数理统计*基本内容;第5、6章是 非参数统计和统计判决函数;第7章是选学内容,包括 异常值、统计诊断及自助法、刀切法等数据处理方法 。其他各章也有一些供选学的内容,如广义*小二乘 估计、广义线性模型、多重比较等。 本书的主要特点是突出统计方法与统计软件包R 的结合。R语言简单易学,R软件免费使用,源代码完 全开放,是培养学生创新能力的工具之一,附录是对R 的简单介绍。此外,构造置信区间的差异度函数也是 国内同类教材中不多见的。 本书可作为数学与应用数学专业本科生的数理统 计教材,由于其不拘泥于数学上的细节,因此也
金义明主编的《概率论与数理统计辅导》分为八章,每章按照内容提要、例题解析和练习题三个部分组成。内容提要比较详细地总结了各章节的定义、重要定理和公式。例题解析对各章节重点题型作了归纳和总结,精选各类典型例题,力求解释详尽,侧重分析,并通过一题多解的讲解,帮助学生提高综合分析能力和解题能力。部分例题综合性强,有一定的难度和深度,对考研复习有很好的参考价值。练习题是教材练习题的一个很好的补充,可以作为考查学生是否掌握该章节知识的基本试题内容,书后给出了全部练习题的答案。本书后精选了五套模拟试卷,并附上详细解答,可以检测学生是否全面掌握知识要点和解题能力,有效地提高学生的应试能力。