本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加外数学建模竞赛的指导用书。
《计量经济学》的两位作者马克·W.沃森与詹姆斯·H.斯托克都是计量经济学领域中的,尤其以时间序列的研究最为出众。本书全面系统地介绍了计量经济学的基本知识。全书共分五篇,内容包括:导论与复习、回归分析基础、回归分析的深入专题、经济时间序列数据的回归分析、回归分析的计量经济学理论。
本书的面世恰逢时机,对应用研究者时常面临的几个重大问题,作者的系统处理方法已获得极大赞誉:“在初级计量经济学教科书中,只有本书对时间序列数据的计量分析进行了认真而又圆满的讨论……它无须过分严密的推导而对复杂的计量经济思想进行了清晰而又直观的表达。”
本书的*特点是,除收录了古尔德《亚洲鸟类》当中的鸟类图谱之外,还首次引进翻译了原书当中的20余万字的观察笔记。阅读时,除了欣赏到精妙绝伦的鸟类彩图之外,还能欣赏到古尔德观察入微的细致描写,鸟类的生活习性、迁徙路线、繁殖特点、被羽的具体特征等等,再辅以鸟类的中文名、英文名、学名以及生态类群、科、属、种名称等详尽资料,让鸟类图谱升级变成一本深入了解鸟类知识,学习自然观察的伟大工具书,既适合带到户外亲身体验,也能够把你带到令人神往的荒野户外。
本书是国外介绍有限元方法的经典入门教程,主要介绍有限元方法的基本理论知识、一般原理、各类实体模型的问题求解和实际工业应用。本书内容丰富新颖, 涵盖了简单的弹簧和杆、梁的弯曲、平面应力/应变、轴对称、等参公式、三维应力、板的弯曲、热传导和流体介质、多孔介质、液压网络、电网和静电学中的流体流动、热应力、与时间相关的应力和热传导等,并由此引出有限元分析的高级课题。此外,本书还在不同阶段引入了弹性基本理论、直接刚度法、伽辽金残余法、势能原理、虚功原理等,以建立分析所需要的方程。
《经济学中的数学》主要介绍高等数学在经济学中的应用。主要包括八个部分。部分为导论(-5章),主要介绍一元微积分及其应用。第二部分(第6-11章)介绍线性代数及其在经济学中的应用,包括线性方程组及其解法、矩阵代数、行列式等内容。第三部分(2-15章)介绍多元微分并重点应用于比较静态分析。第四部分(6-22章)主要是化方面的内容,包括无约束化和约束化等问题。第五部分(第23-25章)介绍特征值与动态学,引入差分方程解决动态经济学的有关问题。第六部分(第26-28章)介绍高等线性代数。第七部分(第29-30章)的高等数学分析是对前面经济学数学方法的进一步深化。第八部分重点介绍数学本身的方法论问题。在《经济学中的数学》的,我们提供了部分习题的答案。
本书针对微观经济计量分析做出了详细研究,内容涉及对揭示个体或厂商经济行为的个体层面数据加以分析。 本书旨在为应用研究者提供一种综合的统计方法,以及将其用于现代微观经济计量领域的研究方法。 本书适合从事相关研究工作的人员参考阅读。
stochaLstic Calculus of Variations(or Malliavin Calculus)consists,in brief,in constructing and exploiting natural differentiable structures on abstract Drobability spaces;in other words,Stochastic Calculus of Variations proceeds from a merging of differential calculus and probability theory. As optimization under a random environment iS at the heart of mathemat’ical finance,and as differential calculus iS of paramount importance for the search of extrema,it is not surprising that Stochastic Calculus of Variations appears in mathematical finance.The putation of price sensitivities(orGreeksl obviously belongs to the realm of differential calculus. Nevertheless,Stochastic Calculus of Variations Was introduced relatively late in the mathematical finance literature:first in 1991 with the Ocone-Karatzas hedging formula,and soon after that,many other applications alDeared in various other branches of mathematical finance;in 1999 a new irapetus came from the works of P.L.Li