本书是一本可以激发读者数学兴趣,启迪数学思维,开阔知识眼界的妙趣横生的数学科普读物。 全书共五章,从不同角度诠释数学之美。 第一章:生活中美丽的数学 从日常点滴中窥见数学之美。从投资理财到项目管理,从密码学到代数几何,数学已渗透到我们生活中的每一个角落。 第二章:上帝的骰子 排列组合与概率 用生动有趣的案例带你领略概率的巧思与随机的神奇。 第三章:囚徒的困局 逻辑推理、决策、斗争与对策 带你体验推理、决策、博弈的乐趣,做一把福尔摩斯 第四章:中外古代趣题拾零 追寻古圣先贤的足迹,带你体会中外数学的智慧 第五章:当数学遇到计算机 从计算机的二进制世界到数码相片,从5G通讯到区块链的实现,本章带你从高科技中发现数学的智慧之光。
《烧掉数学书》是一本全新概念的数学科普。这本书的一大特点是抛开传统晦涩的数学符号和讲述方式,另起炉灶,从零开始,用年轻人易于接受的语言阐释高深的数学知识和概念。这本书打破了数学教育界认为在讲授微积分之前必须花大量时间和精力学习微积分的严格化基础的惯例,从理解微积分本身的用途和方法着手,反过来再提出微积分基础严格化的问题,从而顺理成章地引出极限和逼近等概念。这种方法更符合人们的学习和认知规律,让人能自然而然地接受和理解这些抽象的概念和技巧的源流和必要性,从而为深入的学习打下好的基础。
飞毛腿为什么追不上乌龟? 无穷世界里部分大于整体吗? 理发师到底给不给自己剪头发呢? 2为什么不是有理数? 从一个个问题中,科学家开始探索奇妙的数学世界 用于测量金字塔的高度,预测彗星轨迹,探索大脑结构、走进量子世界 数学,正是物理、化学、生物、天文等学科的基础,人类的每一次重大进步的背后都离不开数学。 本书通过讲述影响世界的40个经典数学问题,多角度展现了人类在探索过程中闪耀的智慧光芒,创造性梳理了数学的发展脉络,帮你发现一个妙趣横生、精彩绝伦的数学世界,让你学会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界。
《数学通俗演义》是一本以章回小说形式演绎的数学史通俗科普读物,全面介绍了数学的起源和发展,内容涵盖了古今中外数学史上的重大事件、重要人物以及各种数学原理的发现和发展,同时还深入浅出地解释了一些重要的数学概念和原理,让读者在了解数学发展史的同时,也能更好地理解相关概念和理论背景,对数学的基本知识有更深入的认识,有助于更好地掌握它们。 《数学通俗演义》涉及的数学发展史时间范围为从上古到20世纪初,内容涵盖了小学、初中和高中的大部分数学知识点,以及部分高等数学的内容。写作上尽量深入浅出,力争做到小学生能看大概,中学生能全部看懂,保证科学性的同时也保证可读性。通过讲述数学家的故事尤其是如何进行数学发现的故事,让读者更好地理解数学的发展逻辑和演变规律,这些故事不仅让数学史更加生动有趣,也
数学作为重要的基础学科,是我们面向未来的重要工具和能力。但问题是,我们如何摆脱数学学习的枯燥甚至是畏难情绪,提升数学教育的质量,真正地享受数学,热爱数学,并愿意钻研数学。 《数学的力量》以诚挚的语言告诉我们,学好数学实际上是人类的天性,只是很多人都被埋没了。数学中蕴含着意义、美、探索、自由、真理、奋斗等各种优秀的品格,和我们个体的内在追求是高度契合的。我们每个人实际上都可以发现数学之美,感受数学之乐,重要的是通过正确的方式去唤醒它们。 这是一本契合时代的动人之作,希望每个人都可以从中看到不一样的数学,转变数学认知,重塑数学思维。
21世纪的今天,我们生活的方方面面无时无刻不在被算法影响和塑造。它们帮我们选择最佳的行车路线,向我们推荐我们可能购买的商品,为我们识别语音和图像,甚至给单身人士匹配婚恋对象。越发强大的算法也在不断突破极限,无论是打败围棋世界冠军柯洁,借助大语言模型与人类会话,还是在200秒内完成超级计算机1万年才能完成的计算。 然而,算法并非新近才开始影响人类社会,人类受益于算法已经有数千年的历史。在《算法简史:从美索不达米亚到人工智能时代》中,以算法发展过程中的关键人物和经典算法为主线,作者克里斯 布利克利绘出了一幅近4 000年的算法发展简史:从镌刻在古巴比伦泥板上求2的平方根的算法,到刘徽和祖冲之父子对圆周率的精确计算;从查尔斯 巴贝奇和艾达 洛芙莱斯试图建造的机械数字通用计算机,到艾伦 图灵对算法的正式
《迷人的逻辑题》介绍了125道经典的逻辑趣味题、数学题和脑筋急转弯。很多都是你似曾相识的题目,比如狼、羊、卷心菜过河问题,数独问题,以及微软笔试中的渡河问题。 这些题目本身并不高深。它们像诗一样,优雅而简洁,需要你用严密的逻辑推理以及灵光一现的反常识灵感才能解开。有些的谜题不需要你有任何方面的知识,只需要你有创造力、技巧以及清晰的思维能力。 解开这些题目,你不但可以享受解题带来的乐趣,还可以从中获得启发,解决生活中的难题。 赶快一试身手吧!看看你能解出多少道题?
数学是什么?数学研究到底是怎么做的?三个小朋友希望平分一个蛋糕和数学究竟有什么关系?为了揭开数学的神秘面纱,破除 数学与生活无关 的迷思,带领大家领略逻辑与数学之美,作者郑乐隽将数学探索巧妙地融入了众多生活化而富有趣味性的例子,比如,为什么甜甜圈和咖啡杯可以被视为同一种形状?为什么按照食谱制作出一个美味的蛋糕证明了数学很容易,而生活很难?当然,这本书不仅仅关乎数学与烹饪,我们还将参加纽约市和芝加哥市的马拉松比赛,近距离参观圣保罗大教堂的三重顶结构,为灰姑娘找到她的水晶鞋,甚至弄清楚为什么我们更倾向于认为西红柿是一种蔬菜而不是一种水果。在此基础之上,我们还将进一步探讨范畴论 数学的数学 。超越具体的数字和公式,我们将借助范畴论继续探索我们是如何知道、理解和相信所有事实的。很多人都
伯特兰 罗素曾经写道,数学可以 如诗歌一般确定无疑地 令人感到欢欣愉悦和志得意满。ei 1 = 0这个等式尤其如此。莱昂哈德 欧拉堪称数学界的莫扎特,即使在他去世两个世纪之后,他的这项智慧成就被 视为一块概念论的钻石,有着无法逾越的美。极少有人对它无动于衷:物理学家理查德 费曼将它称为 数学中*卓越的公式 ,而数学家基思 德夫林则将它比作 莎士比亚的一首捕捉到了爱的精髓的十四行诗。 欧拉公式有时也被称为上帝等式,其中只包含五个数,但却令人惊讶地揭示出了那些隐匿的关联。这个等式将从基本算术到复利、圆的周长、三角学、微积分、甚至无限的万事万物联系在一起。就这一点而言,它既可以作为*jia数学入门,也可以完mei地介绍历史上wei大的数学家们。戴维 斯蒂普用欧拉等式来作为一盏导航灯,引ling着我们一个接一个地浏览那些具有
微积分入门 为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出 严密 与 直观 的结合,重视数学中的 和谐 与 美感 ,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
《黎曼猜想漫谈:一场攀登数学高峰的天才盛宴》用科普的语言、用抽丝剥茧的方式讲述了黎曼猜想提出后一百多年里的方方面面。这使得对数学知识知之不多的读者了解黎曼猜想也成为可能。作者讲述了曾经从事过黎曼猜想的著名数学家的生平趣事和在黎曼猜想研究方面所做的贡献,介绍了100多年里相关数学理论和工具的发展情况。人们常常将好的数学问题比喻成会下蛋的母鸡,以此形容好的数学问题在数学发展过程中的推动作用。从这样的数学问题研究过程中,我们可以管窥数学发展的概貌。因此,阅读本书能够帮助我们了解与黎曼猜想有关的数学进展。而且,本书的文笔力求通俗有趣,比如: 山寨版 黎曼猜想、 豪华版 黎曼猜想等等。相信对数学文化、数学科普感兴趣的读者一定会有所收获。并且这本书对于数学专业人士也不失为一本有趣而有用的读物。
·为什么1 1=2? ·为什么奇数和偶数交替? ·代数的意义是什么? ·数学问题真的有且只有一种标准答案吗? 从实数、虚数到复杂的运算顺序,将“消除世界对数学的恐惧”视为终身奋斗事业的剑桥博士、谢菲尔德大学终身教授郑乐隽带领我们进入了一段从未见过的数学旅程,揭示了如何从看似不可能的来源中发现深刻的真相。作者认为,数学不仅仅是关于如何得到正确答案的科学,数学也是关于自己创造的科学和真理,是一段令人兴奋,令人畏惧,令人敬畏,终获得快乐的经历。她希望通过这本书的阐释,帮助读者理解数学到底是什么,通过理解数学的本质,消除关于数学的神话和误解,消除对数学狭隘的、缺乏想象力的认识,用有趣的数学思维理解我们的真实世界。
本书是基础数学领域的畅销书籍之一,全书以通俗易懂的文字和图表,结合日常生活中的大量实例,系统地介绍了数学各领域的重要基础知识,深入浅出地探讨了常见概念、原理、方法和应用。全书共14章,主要内容包括问题求解、集合论、逻辑、图论、数系、数论和实数系、代数模型、消费者数学、几何、分配、投票、计数、概率以及描述性统计等。全书强调直觉思维和可视化,以帮助读者理解相关知识并强化记忆为目标,以基本概念、例题和练习题为主线,适当引入了历史回顾、运用技术和生活中的数学等知识点,适时采用了要点、解题策略、建议、自我测试、本章复习题和本章测试等辅助手段。本书的主要读者对象是中等学校、高等学校文科类专业的学生,也可以是对数学感兴趣的中学生及其他社会公众。
我们通常认为,数学是逻辑性的学问,而日本数学家冈洁先生却认为,数学中重要的是 情绪 。情绪是影响心智与认知发展的重要因素,若不能培育 健全的情绪 ,则很难真正理解数学和创造性是什么。本书从 情绪与心智 的角度,论述了认知发展、义务教育中的深层问题,同时阐述了对人性的细微考察与独到理解,是一本影响了日本几代人的经典*作。
本书分八章28节,主要针对中考数学的教学难点问题展开探究。每节内容包含 模型制作 模型探索 , 模型应用 尝试练习 四大板块。其中 模型制作 主要学习如何利用几何画板进行数学模型的制作; 模型探索 则是对该数学模型展开数学实验,积极探索进而提出问题,然后通过分析思考,数学证明进行归纳总结出解决某类数学问题的一般规律; 模型应用 则是应用探索的数学模型来解决中考中的相关问题; 尝试练习 则有针对性地配备相应中考题进行模型方法的巩固。
科学家头脑里的那些灵感,都是怎么来的? 在处理*抽象的数学问题时,他们在想些什么呢? 《质数的阴谋》给出的一个答案是: 灵感会不期而遇 。一位研究人员想到了公共汽车站的量子混沌系统;另一个人在朋友的后院突然发现了一条证明数论定理的途径;一个统计学家有一个 浴室沉陷顿悟 ,发现了解决高斯相关不等式的关键。 这是一本汇集了精彩的数学探索故事的科普读物,收录了知名数理杂志《量子》(Quanta)的37篇文章,汇集了在理解我们的数学世界方面新突破的权威成果。它通过严肃地对待数学,与难懂的概念进行斗争,并以一种能反映我们对世界和我们自身固有的好奇心的方式来解释数学,享受数学带给生活的红利。 这些故事表明, 灵感是随意的 ,揭示了令人惊讶的解决方案和令人兴奋的发现。在这本书里,我们可以看到智慧的头脑们进行数学探
本书以数论和集合论两个数学理论为依据来展开介绍无穷这一概念。全书的形式为每一章讲一堂课,共8 章,每一章都以幽默、轻快的笔触,以及基础的数学符号来讲述与无穷相关的理论及悖论,展现了数学世界的精彩。在书中我们会遇到许多既熟悉又陌生的数学家、思想家及他们在数学之旅中的故事,如芝诺、毕达哥拉斯、伯特兰 罗素、艾米 诺特、欧几里得等;还介绍了相关的悖论和问题,加芝诺悖论、希尔伯特的旅馆悖论、阿基里斯与众神悖论、天堂与地狱悖论、罗斯- 利特尔伍德悖论、伽利略悖论等。 本书读起来轻松惬意,适合爱好数学的人阅读。
我们是不是比父母更聪明?开车时打电话与酒驾一样危险吗?坐飞机和开车,哪种方式更安全?喝咖啡是否有益健康?星座分析结果是否准确?金钱能买到爱情吗?钻石越重,价格就越高吗?小学四年级的学生可以用统计学做什么?拥有三个孩子的家庭,一儿两女的概率是多少? 如果你想知道这些问题的答案,就来阅读本书吧。 大数据时代,统计学是读懂、听懂和看懂事情真相的基础,统计思维是职业晋升和沟通交往的重要技能。《统计学入门:文科生也能看得懂的统计学(第5 版)》是一本美国流行的统计学应用入门书。它通过生活中有趣的案例、直观的图表阐述了各种统计概念与统计技术的应用,没有枯燥乏味的理论知识、生涩难懂的理论证明,只有日常生活所需要的统计思想、正确分析数据的基本路径,做到了通俗易懂、深入浅出。 如果你想更好地理解
《什么是数学:对思想和方法的基本研究(第4版)》是世界著名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读《什么是数学:对思想和方法的基本研究(第4版)》。 特别对中学数学教师、大学生和高中生,《什么是数学:对思想和方法的基本研究(第4版)》都是一本极好的参考书。