Spark SQL 是 Spark 技术体系中较有影响力的应用(Killer application),也是 SQL-on-Hadoop 解决方案 中举足轻重的产品。《Spark SQL内核剖析》由 11 章构成,从源码层面深入介绍 Spark SQL 内部实现机制,以及在实际业务场 景中的开发实践,其中包括 SQL 编译实现、逻辑计划的生成与优化、物理计划的生成与优化、Aggregatio算子和 Joi算子的实现与执行、Tungste优化技术、生产环境中的一些改造优化经验等。
本书重点介绍数据质量管理与安全管理的理论及应用。首先通过数据管理现况和问题的分析,提出数据质量管理的步必须是将各种来源的数据标准化,具有统一的数据格式和规则。书稿中强调了提高数据质量不仅可提高信息系统的质量,还可提高经营活动的质量。需要制定质量管理计划或执行具体的质量管理活动。定义了数据质量的准确性、一致性、可用性、可达性、及时性、安全性这6个标准以及对应的管理流程,划分了5个能力成熟度的等级,界定了从管理者到执行者等各个质量管理活动和责任。提出多项数据质量管理主要技术和各国实用案例,还进一步在Orange数据库中实践了数据质量诊断流程。书稿后半部针对日益增长的数据库安全性的需求,提出了安全管理系统构建、访问控制,数据伪装等具体可行的技术手段,最后还将数据安全技术推广到大数据的应用场景
财务管理对所有企业而言都具有重要战略意义。一个能全盘掌握企业信息,并能清晰地提供决策所需资料的数据处理系统将是企业提升财务管理系统的核心平台。Oracle公司是全球的信息管理软件及服务供应商,Oracle数据库已成为世界上使用最广泛的数据库系统之一。在市场竞争日趋激烈的今天,该系统可以为企业培养迅捷的反应能力和整合资源提供极大的便利。
这是一本系统剖析Greenplum开源大数据平台的书籍,也是大数据战略制定与落地的实战型指导书! 本书围绕数字原生和云计算、大数据、人工智能驱动的企业数字化转型的核心诉求,从商业和技术实战视角分享了业界领先企业大数据战略的深刻思考,并提供了大数据战略从制定到落地的全面指导。既有高阶数字化战略高度对大数据的解读,又有技术实战角度对使用 Greenplum 大数据和机器学习平台实现大数据战略的实践指南。 本书作者来自Greenplum 核心研发团队,致力于以开源、开放的理念和先进的技术推进大数据产业生态,助力企业以更低的成本、更高的效率实现数字化转型,并基于Greenplum 开源社区培养大数据产业更多人才。 本书分为四个部分。 部分介绍大数据战略。其中, 章将分享作者对于人工智能、大数据和云计算之间关系的理解以及对人和人工智能的思
书中描述了Python程序的基本构件:类型、操作符、语句、函数、模块、类以及异常,此外还介绍了更多高级主题,包括复杂的实例,最后讲述了如何使用Python定制库来创建大型程序。
AuthorizedtranslationfromtheEnglishlanguageedition,entitledBeyondBigData:UsingSocialMDMtoDriveDeepCustomerInsight,0 13 350980 XbyMartinOberhofer,publishedbyPearsonEducation,Inc,publishingasIBM,copyright?i2014.AllRightsReserved.Nopartofthiookmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopying,recordingorbyanyinformationstorageretrievalsystem,withoutpermissionfromPearsoneducation,Inc.CHINESESIMPLIFIEDlanguageeditionpublishedbyTSINGHUAUNIVERSITYPRESSCopyright?i2016.
本书讲述如何从技术和市场信息特别是专利信息中挖掘获得潜在的竞争情报,从介绍技术挖掘的基础概念、原理开始,讲解数据采集、基本分析、高级分析、趋势分析、专利分析的方法和技巧,给出技术挖掘指标组合,并结合具体案例指出技术挖掘过程中的注意事项,帮助读者了解技术挖掘流程和掌握技术挖掘方法。本书还列出了可供选择使用的科技数据库、技术挖掘软件的资源清单,为有意实际进行技术挖掘的读者提供了指引。 本书可作为技术研究人员,使用技术成果的分析人员和直接从事管理的人员的指导书,也可以作为技术分析机构和研究生课程的参考书。