数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
本书的主要内容包括网络数据的定义及相关指标、大规模网络中的链路预测、网络聚类分析、网络数据中的空间自回归模型、大规模网络数据中的模型估计方法、网络数据中的空间自回归模型的拓展及应用、网络中的空间自回归模型的其他研究方向等。本书关注大规模网络数据分析中的模型方法。除模型方法本身的理论拓展之外,在估计方法等方面会涉及大规模数据中的快速计算方法。由于网络分析本身的范围非常广泛,故本书涉及的内容仅局限于作者及团队研究工作中使用到的一部分。在本书的后,为了启发读者思路,对于部分已有网络研究进行了梳理。
本书的主要内容是作者及其合作者在复杂数据模型这一领域近些年的研究成果, 以及相关的最新进展. 全书共 6 章. 第 1 章简要介绍几类复杂数据模型和 bootstrap 等预备知识和相关研究问题. 第 2~6 章, 系统讨论各种复杂数据统计推断中的 bootstrap 基本理论、方法及其应用, 包括 Behrens-Fisher问题、异方差回归模型、异方差 ANOVA 和 MANOVA 模型、混合效应模型及高维数据分析中的 bootstrap 统计推断.
从统计学科与计算机科学的性质认知,大数据是指那些超过传统数据系统处理能力、超出经典统计思想研究范围、不借用网络无法用主流软件工具及技术进行单机分析的复杂数据的集合,对于这一数据集合,在一定的条件下和合理的时间内,我们可以通过现代计算机技术和创新的统计方法,有目的地进行设计、获取、管理、分析,揭示隐藏在其中的有价值的模式和知识。 《大数据:统计理论、方法与应用》共分五章,其内容包括大数据下的统计理论体系、大数据下的数据集整合分析、大数据下的高维变量选择方法、大数据下的统计方法并行计算和大数据下的统计方法应用——网络舆情分析。 本书内容新颖,取材国内外资料,同时认真总结了作者近年来的科研成果,重点反映统计学对大数据发展的影响,突出五大特点: (1)充分体现学科融合; (2)
本书共 17 章。第 1 章是概述,阐述数据挖掘的意义与实际应用。第 2 ~ 8 章介绍网络和数据技术基础知识。这一部分内容涉及互联网上通信、交换、保存和显示信息的基础技术(如 HTTP 、 HTML 、 XML 、 JSON 、 AJAX 、 SQL 等),并讲解用于查询网络文档和数据集的基本技术( XPath 和正则表达式)。第 9 ~ 11 章介绍网络抓取和文本挖掘的实用工具箱。这一部分由三个核心章节组成:第 9 章讲解多种网络抓取技术,涉及正则表达式的使用、 XPath 、各类 API 接口、其他数据类型以及开源社区相关的技术;第 10 章深入介绍用于统计性文本处理的技术;第 11 章给出关于用 R 管理数据的项目中常见问题的一些见解。第 12 ~ 17 章介绍实际案例分析,涉及美国参议院里的合作网络、从半结构化文档解析信息、利用 Twitter 预测 2014 年奥斯卡奖、绘制姓氏地理分布图、采集关于手机的
现代信息社会已经迈入大数据时代,但大数据给人们带来了前所未有的挑战,如何有效地从动态变化,结构化、半结构化和非结构化等多模态数据共存的大数据中进行高效实时的数据挖掘并发现有价值知识已成为当前信息科学领域亟待解决的问题。《大数据挖掘的原理与方法——基于粒计算与粗糙集的视角》针对大数据呈现的体量巨大、多源异构、动态性和不确定性等特点,以粒计算理论为基础,以典型粗糙集模型为对象,以增量学习技术为手段,以云计算并行框架为支撑平台,构建大数据分析与挖掘的原理和方法及其算法,并融入了相关领域学者在动态知识发现、数据融合和大数据并行处理等成果,力图展现基于粒计算和粗糙集视角处理大数据的*新进展。
《Tableau8权威指南》对如何利用Tableau软件制作交互美观的仪表板做了详细而全面的介绍。全书主要分为7个主题:如何连接各种数据源、如何快速创建各种图形、如何创建地图及自定义地图、如何使用各种函数创建新的字段、如何使用参数、如何设计交互的仪表板以及如何共享仪表板并让其自动刷新,适合数据分析师、视觉设计师和对数据感兴趣的开发人员学习提高。 如果你是初次接触Tableau软件,那么《Tableau8权威指南》对你一定大有帮助。书中对Tableau的每一步操作、每一个按钮的作用都有详尽的说明,加上Tableau8软件本身简单易用,读完本书可让你迅速掌握Tableau8的完整功能。 如果你是Tableau软件的老用户,阅读《Tableau8权威指南》也能让你对Tableau8的细节功能有更深入的认识。例如,在Tableau8中,用蓝色标记的字段说明其值是离散的,用绿色标记的字
“大数据”一词已成为当下热门的词汇之一。人们热切期待大数据能给工作、学习和生活等方面带来前所未有的变化,而大数据的采集、存储、计算、分析挖掘、呈现和安全等技术正是实现这一变化的关键。《大数据技术全解:基础、设计、开发与实践》的重点不在于对大数据技术的原理性介绍,而是从实战角度出发,系统地阐述如何基于Hadoop开源软件为客户设计、安装和开发一个大数据系统。《大数据技术全解:基础、设计、开发与实践》还着重分享了具体实践中的一些案例,不仅对于从事大数据系统开发的IT技术人员具有珍贵的参考价值,而且对准备实施大数据系统项目的企业级客户也具有指导作用。 《大数据技术全解:基础、设计、开发与实践》可以作为计算机软件专业的本科生和研究生的大数据技术教材,也可作为大数据技术开发培训、大数据系
《网站数据挖掘与分析:系统方法与商业实践》是目前网站数据挖掘与分析领域*系统性、深度和商业实践指导价值的著作,由来自在线数据分析领域巨擘Webtrekk的官方资深数据分析专家撰写,获得黄成明、宋星、蓝鲸、宫鑫等近10位国内网站分析领域*专家联袂推荐。 《网站数据挖掘与分析:系统方法与商业实践》从5个维度对网站数据分析进行了全面讲解: 认知维度:首先告诉企业和数据分析师应该如何科学地认识网站数据分析,其次指导企业如何从零开始构建自己的数据体系,后讲解了数据分析师应该如何从零开始建立自己的成长体系; 技术维度:详细地讲解了网站数据的采集和配置、网站分析工具的选择和使用、网站数据整合的方法、数据监测与评估的指标,以及数据分析的场景和相应的方法; 应用维度:通过10余个商业化的案例,还原
本书采用图解形式对“大数据”这一概念进行了全新解读,将大数据从一个IT术语变成了人人能读懂的大众词汇。本书从大数据的“前世今生”讲起,通过列举各行各业应用大数据的案例,全面解读了大数据和个人的关系、如何利用大数据创业、大数据中隐藏了多少价值、大数据给我们带来了哪些冲击和变革、如何利用大数据进行精准营销等读者十分关心的热点问题。本书图文并茂,读者利用零散时间,就能迅速了解大数据知识。 本书适合企业管理者、创业者、投资者、高校相关专业师生等想运用大数据改变未来生活的人士阅读。
在Web2.0技术与应用不断深化以及移动应用不断产生的新时代,互联网已成为社会民意与民声的重要来源。利用互联网中用户产生的各种数据进行社会舆情分析,已成为当前信息检索与情报获取的一个重要研究方向。人们深刻地认识到,网络信息不仅有研究与应用价值,而且是保证国家或企业安全的重要基础,具有重要的战略意义与社会经济价值。本书对2014年天涯论坛网民在经济、政治、民生、生态以及国际与军事等几个关键领域的网络民意,从网络文本数据挖掘的角度进行了初步分析。此外,应用社会网络分析方法直观地展示了一些与内容分析相符的结论。通过这些相关的分析,反映出热点事件以及相关民意,期望为相关机构和部门信息决策提供参考。
当下,大数据是一个热门的话题,很多领域的学者,从不同的角度进行了深入的讨论。本书从大数据的历史、内涵、哲学和技术四个角度,全面解析大数据,让读者对大数据有更深入的了解。 《品味大数据》共11章,大致分为4块:第1-3章主要漫谈了大数据的有趣的历史,包括数据的启蒙、信息载体的演变和数据管理的发展脉络。第4-6章主要聊聊大数据的内涵,包括大数据与哲学及第四科学范式的关联。第7-9张是大数据的杂谈,包括大数据的用途、可能面临的陷阱以及通过小故事对大数据进行一些烦死,第10-11章主要涉及大数据的技术,包括100余篇大数据论文的漫读及Hadoop的初级实战篇。 图书结构完整,行文幽默,并以图文并茂、通俗易懂的方式力图让读者心有余地品味大数据。图书援引了数以百计大家牛人的观点,或褒或贬,高手过招,精彩纷呈,是一
本书包括五部分内容。部分(第 1~3 章)涉及数据挖掘技术的基础知识,介绍数据挖掘的定义、数据挖掘工具及应用领域,数据挖掘的数学基础内容,以及海量数据挖掘处理技术。第二部分(第 4~5 章)分别从聚类技术和离群点挖掘技术阐述聚类在语音区分、新闻分组、销售策略制定、交通事故预测、欺诈检测、入侵检测、异常气候检测等方面的应用。第三部分(第 6~11 章)分别从决策树、基于实例的学习、支持向量机、贝叶斯学习、人工神经网络、遗传算法在病情诊断、*欺诈、机械装备设计、法律案件审理、动物分类、垃圾邮件过滤、手写文字识别、股票价格预测、人脸识别、音乐生成等方面阐述分类的应用。第四部分(第 12 章)阐述回归数据挖掘技术的应用,涉及卡尔曼算法在股票价格预测、 GPS 定位方面的应用。第五部分(第 13 章)介绍推荐系统这个典
本书共16章,共三篇。基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具MATALB进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程关键环节,穿插程序实现代码。最后通过上机实践,加深数据挖掘技术在案例应用中的理解。提高篇(第16章),介绍了基于MATLAB二次开发的数据挖掘应用软件——TipDM数据挖掘建模工具,并以此工具为例详细介绍了基于MATLAB接口完成数据挖掘二次开发的各
《滇西学术文丛:数据挖掘及其应用研究》全面介绍了数据挖掘的背景信息、相关概念及其所使用的主要技术,针对关联规则数据挖掘,系统深入地描述了Apriori算法和FP-growth算法,并比较了各自的优缺点。《滇西学术文丛:数据挖掘及其应用研究》基于关系代数的关联规则挖掘,讨论该算法的实现过程,并对该算法作复杂性分析,在聚类分析数据挖掘、序列模式挖掘等方面也有介绍。对网络入侵检测的拒绝服务攻击类型进行了序列模式挖掘和聚类分析,为进一步开发入侵检测系统提供决策依据,数据挖掘在农作物病虫害预警、居民消费结构分析、多媒体图像挖掘等方面都有应用。
社交网站数据如同深埋地下的“金矿”,如何利用这些数据来发现哪些人正通过社交媒介进行联系?他们正在谈论什么?或者他们在哪儿? 《社交网站的数据挖掘与分析(原书第2版)》第2版对上一版内容进行了全面更新和修订,它将揭示回答这些问题的方法与技巧。你将学到如何获取、分析和汇总散落于社交网站(包括Facebook、Twitter、LinkedIn、Google+、 GitHub、邮件、网站和博客等)的数据,以及如何通过可视化找到你一直在社交世界中寻找的内容和你闻所未闻的有用信息。 ■ 借助IPython Notebook、自然语言工具包、NetworkX和其他科学计算工具挖掘主流社交网站 ■ 使用高级文本挖掘技术(如聚类和TF-IDF)来提取人类语言数据中有价值的知识 ■ 通过发现GitHub上人、编程语言和代码工程间的亲密性,构建兴趣图谱 ■ 利用D3.js进行交互式可视化
《 R 数据分析 —— 方法与案例详解(双色)》是一本 R 语言和数据分析的入门教材,循序渐进、深入浅出,每个知识点尽量从实际的应用案例出发,以问题为导向,在解决问题中学习统计方法、 R 语言的基本使用以及编程技巧。 《 R 数据分析 —— 方法与案例详解(双色)》内容涵盖 R 数据结构、函数与优化、抽样模拟、统计分析、假设检验、回归分析、统计绘图和 R 包制作等内容。 《 R 数据分析 —— 方法与案例详解(双色)》的定位是为业界数据分析人员、经济管理类、医学的学生提供方法和程序上的参考,在写作过程中尽量删去比较理论的数学原理,这样能够帮助读者轻松上手学习。
本书以数据挖掘为应用载体,按应用频率的高低,系统地介绍分治算法、贪心算法、搜索算法和动态规划算法。同时,介绍算法分析所用的渐近符号及常用的分析方法,包括递归分析方法、非递归分析方法。本书的特点是结合作者及其团队研究的数据挖掘问题,注重介绍算法的基本思想及算法应用的启发性。
《数据挖掘导论(完整版)》涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法,目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。《大数据:互联网大规模数据挖掘与分布式处理(第2版)》 源自斯坦福大学 海量数据挖掘 (CS246: Mining Massive Datasets)课程,主要关注极大规模数据的挖掘。主要内容包括分布式文件系统、相似性搜索、搜索引擎技术、频繁项集挖掘、聚类算法、广告管理及推荐系统。两本书都提供了大量示例、图表和习题。
《如虎添翼!数据处理的 SAS EG 实现》作为 SAS EG 模块的中文教材,并非单纯的逐个讲解菜单的操作,而是将数据分析的基本思路、流程融入到软件的操作之中。每章通过设置商业背景,配以 SAS 理论的讲解形式更贴近读者的实际工作,使读者真正理解数据分析、数据处理的精髓。本书除讲解软件操作,还同时介绍了对应菜单操作的 SAS 程序语言实现过程,读者可以根据自己的需要逐步学习,进而走进用 SAS 程序处理数据的大门。 《如虎添翼!数据处理的 SAS EG 实现》适合那些想了解数据预处理,或者被数据的预处理占去大部分时间而想提高效率,或者囿于菜单操作的局限性而希望通过程序实现的数据分析人员。
本书以数据为研究对象,论述了从数据起源到数据未来的全过程,通过对数据的研究,揭示了物质、数据与信息之间的深刻关系,构建了一门独立的数据科学体系。本书对数据与数据科学的基本原理与规律、数据的基本定律与基础问题、数据与数据科学的基本方法等做了全面、细致的探索,提出了物质定义数据、数据定义信息等重要观点。
本书以当前热点的数据挖掘应用贯穿全书,通过详解大数据挖掘技术在系统日志、工作票、可持续性研究、推荐系统、智能问答系统、社交媒体、生物信息学与健康医疗、隐私保护等方面的实际应用案例,阐述了如何更好地应用和学习数据挖掘技术。本书融入了数据挖掘前沿技术和典型应用,不仅适合热爱和关心数据挖掘技术的学术界和工业界人士阅读,还适合作为各大高校的数据挖掘和机器学习课堂的实践教材和参考书籍。本书有助于读者更好地理解数据挖掘技术背后的根源和本质。
本书完整全面地讲述数据挖掘的概念、方法、技术和近期新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。 本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的参考书,是一本适用于数据分析、数据挖掘和知识发现课程的优秀教材,可以用做高年级本科生或者一年级研究生的数据挖掘导论教材。