本书以海量图解的形式,详细讲解常用的数据结构与算法,又融入大量的竞赛实例和解题技巧。通过对本书的学习,读者可掌握12种初级数据结构、15种常用STL函数、10种二叉树和图的应用,以及8种搜索技术,并领悟不同的数据结构和算法的精髓,熟练应用各种算法解决实际问题。 本书总计9章。第1章讲解C 语言基础,包括语法、函数、递归和数组;第2章讲解算法入门知识,包括算法复杂度计算、贪心算法、分治算法和STL应用;第3章讲解线性表的应用,包括顺序表、单链表、双向链表、循环链表和静态链表;第4章讲解栈和队列的应用,包括顺序栈、链栈、顺序队列和链队列;第5章讲解树的应用,包括树的存储、二叉树遍历与还原、哈夫曼编码;第6章讲解图论基础,包括图的存储、图的遍历和图的连通性;第7章讲解图的应用,包括短路径、小生成树、拓扑排序
演化学习利用演化算法求解机器学习中的复杂优化问题, 在实践中取得了许多成功, 但因其缺少坚实的理论基础, 在很长时期内未获得机器学习社区的广泛接受. 本书主要内容为三位作者在这个方向上过去二十年中主要工作的总结. 全书共18 章, 分为四个部分: 部分(第1~2 章) 简要介绍演化学习和一些关于理论研究的预备知识; 第二部分(第3~6章) 介绍用于分析运行时间复杂度和逼近能力这两个演化学习的基本理论性质的通用工具; 第三部分(第7~12 章) 介绍演化学习关键因素对算法性能影响的一系列理论结果, 包括交叉算子、解的表示、非精确适应度评估、种群的影响等; 第四部分(第13~18 章) 介绍一系列基于理论结果启发的具有一定理论保障的演化学习算法. 本书适合对演化学习感兴趣的研究人员、学生和实践者阅读. 书中第二部分内容或可为有兴趣进一步探索演化学习理
本书通过主人公小灰的心路历程,用漫画的形式讲述了算法和数据结构的基础知识,复杂多变的算法面试题目及算法的实际应用场景。首先介绍了算法和数据结构的总体概念,告诉大家算法是什么,数据结构又是什么,都有哪些用途,如何分析时间复杂度,如何分析空间复杂度。第二章 介绍了*基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。第三章 介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉树的特殊形式二叉堆和优先队列的应用。第四章 介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。第五章 介绍了十余种职场上流行的算法面试题目及详细的解题思路。例如怎样判断链表有环、怎样计算大整数加法等。第六章 介绍了算法在职场上的一些应用,例如使用LRU算法来淘汰冷数据,使用Bitmap算法
本书介绍了算法设计的五个主要原则:分治法、贪婪算法、稀疏、动态程序设计和穷举搜索。让学生、教师、研究人员和专业人员更好地了解一个好的算法是如何组成的,以及如何用纯函数的形式表达这些算法。
本书编者倡导 自主编程 ,以问题解决为主线,致力于提升读者的计算思维与编程技能,引导读者科学地学习算法。全书共分为四章:第一章重点阐述数据抽象的方法及如何选择合适的数据结构,并介绍线性数据结构的基本应用;第二章通过生动的例子,详述了模拟、解析和贪心这三种策略,展示了如何结合严密的算法逻辑与实际操作经验来解决问题;第三章则以深入浅出的方式,讲解了 大化小 的思维方式,介绍了如何利用递推、分治和动态规划等算法来简化和解决复杂问题;第四章全面剖析了好算法的标准,并详细介绍了优化算法时间复杂度和空间复杂度的常用技巧。 本书可以作为数据结构和算法入门的培训教材,也可以作为准备参加全国信息学奥林匹克竞赛的学生赛前集训用书,还可以作为有一定编程语言基础的算法爱好者的参考书籍。
深度学习是目前学术界和工业界都非常火热的话题,在许多行业有着成功应用。本书由Hulu的近30位算法研究员和算法工程师共同编写完成,专门针对深度学习领域,是《百面机器学习:算法工程师带你去面试》的延伸。全书内容大致分为两个部分,*部分介绍经典的深度学习算法和模型,包括卷积神经网络、循环神经网络、图神经网络、生成模型、生成式对抗网络、强化学习、元学习、自动化机器学习等;第二部分介绍深度学习在一些领域的应用,包括计算机视觉、自然语言处理、推荐系统、计算广告、视频处理、计算机听觉、自动驾驶等。本书仍然采用知识点问答的形式来组织内容,每个问题都给出了难度级和相关知识点,以督促读者进行自我检查和主动思考。书中每个章节精心筛选了对应领域的不同方面、不同层次上的问题,相互搭配,展示深度学习的 百面 精
内 容 提 要 本书结合实际应用场景讲解数据结构和算法,涵盖常用、常考的数据结构和算法的原理讲解、代码实现和应用场景等。 本书分为11章。第1章介绍复杂度分析方法。第2章介绍数组、链表、栈和队列这些基础的线性表数据结构。第3章介绍递归编程技巧、8种经典排序、二分查找及二分查找的变体问题。第4章介绍哈希表、位图、哈希算法和布隆过滤器。第5章介绍树相关的数据结构,包括二叉树、二叉查找树、平衡二叉查找树、递归树和B 树。第6章介绍堆,以及堆的各种应用,包括堆排序、优先级队列、求Top K、求中位数和求百分位数。第7章介绍跳表、并查集、线段树和树状数组这些比较高级的数据结构。第8章介绍字符串匹配算法,包括BF算法、RK算法、BM算法、KMP算法、Trie树和AC自动机。第9章介绍图及相关算法,包括深度优先搜索、广度优先搜索、拓扑排序
《程序员代码面试指南:IT名企算法与数据结构题目 解(第2版)》是一本程序员代码面试\\\\\\\\\\\\\\\"神书”!书中对IT名企代码面试各类题目的 解进行了总结,并提供了相关代码实现。针对当前程序员面试缺乏 题目汇总这一痛点,本书选取将近300道真实出现过的经典代码面试题,帮助广大程序员的面试准备做到接近万无一失。\\\\\\\\\\\\\\\"刷”完本书后,你就是\\\\\\\\\\\\\\\"题王”!《程序员代码面试指南:IT名企算法与数据结构题目 解(第2版)》采用题目解答的方式组织内容,并把面试题类型相近或者解法相近的题目尽量放在一起,读者在学习本书时很容易看出面试题解法之间的联系,使知识的学习避免碎片化。书中将所有的面试题从难到易依次分为\\\\\\\\\\\\\\\"将”“校”“尉”“士”四个档次,方便读者有针对性地选择\\\\\\\\\\\\\\\"刷”题。本书所收录的所有
《程序员代码面试指南:IT名企算法与数据结构题目 解(第2版)》是一本程序员代码面试\\\\\\\\\\\\\\\"神书”!书中对IT名企代码面试各类题目的 解进行了总结,并提供了相关代码实现。针对当前程序员面试缺乏 题目汇总这一痛点,本书选取将近300道真实出现过的经典代码面试题,帮助广大程序员的面试准备做到接近万无一失。\\\\\\\\\\\\\\\"刷”完本书后,你就是\\\\\\\\\\\\\\\"题王”!《程序员代码面试指南:IT名企算法与数据结构题目 解(第2版)》采用题目解答的方式组织内容,并把面试题类型相近或者解法相近的题目尽量放在一起,读者在学习本书时很容易看出面试题解法之间的联系,使知识的学习避免碎片化。书中将所有的面试题从难到易依次分为\\\\\\\\\\\\\\\"将”“校”“尉”“士”四个档次,方便读者有针对性地选择\\\\\\\\\\\\\\\"刷”题。本书所收录的所有
本书以海量图解的形式,详细讲解常用的数据结构与算法,并结合竞赛实例引导读者进行刷题实战。通过对本书的学习,读者将掌握22种高级数据结构、7种动态规划算法、5种动态规划优化技巧,以及5种网络流算法,并熟