筛选:
    • 工程控制论 下册 第三版
    •   ( 877 条评论 )
    • 钱学森,宋健 /2024-12-01/ 科学出版社
    • 本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。

    • ¥103.4 ¥188 折扣:5.5折
    • 动手学系列:深度学习PyTorch+强化学习+机器学习 当当套装3册
    •   ( 183 条评论 )
    • 阿斯顿·张Aston Zhang)[美]扎卡里·C. 立顿Zachary C. Lipton李沐(Mu Li /2024-03-01/ 人民邮电出版社
    • 9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用

    • ¥159.2 ¥289.5 折扣:5.5折
    • 人工智能伦理
    •   ( 437 条评论 )
    • 于江生 /2022-01-01/ 清华大学出版社
    • 人工智能 (AI) 时代已悄然而至,然而对 AI 伦理学的研究却刚刚起步。与以往的技术革命不同,AI 有望在多个领域取代人类,但也有伤害人类的潜在风险。为防止对AI技术的滥用,我们在复杂性变得不可控之前,必须把糟糕的情况都预想到、分析到。 《人工智能伦理》从人工智能的关键内容(包括图灵测试、数据、知识、机器学习、自我意识等)出发,尽可能地用朴素的语言讲清楚复杂的概念,揭示出各种AI伦理问题以唤起读者的思考。本书基于大量真实数据,阐述了和平、合理发展 AI 技术的伦理思想,对 AI 技术可能引发的某些社会问题(如技术失业、两性平等)也做了剖析。

    • ¥102.7 ¥158 折扣:6.5折
    • 高通量多尺度材料计算和机器学习杨小渝9787030762825科学出版社
    •   ( 189 条评论 )
    • 杨小渝 /2024-04-01/ 科学出版社
    • 传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的

    • ¥108.9 ¥198 折扣:5.5折
    • 深度学习精粹与PyTorch实践
    •   ( 136 条评论 )
    • [美] 爱德华·拉夫Edward Raff)著 郭涛 译 /2024-08-01/ 清华大学出版社
    • 深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。 《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行! 主要内容 ● 选择正确的深度学习组件 ● 训练和评估

    • ¥125.4 ¥228 折扣:5.5折
    • 贝叶斯推理与机器学习
    •   ( 174 条评论 )
    • [英]大卫·巴伯 /2023-11-14/ 机械工业出版社
    • 本书全面介绍贝叶斯推理与机器学习,涉及基本概念、理论推导和直观解释,涵盖各种实用的机器学习算法,包括朴素贝叶斯、高斯模型、马尔可夫模型、线性动态系统等。本书在介绍方法的同时,强调概率层面的理论支持,可帮助读者加强对机器学习本质的认识,尤其适合想要学习机器学习中的概率方法的读者。本书首先介绍概率论和图的基础概念,然后以图模型为切入点,用一种统一的框架讲解从基本推断到高阶算法的知识。本书不仅配有BRML工具箱,而且提供大量MATLAB代码实例,将概率模型与编程实践相结合,从而帮助读者更好地理解模型方法。

    • ¥115.4 ¥199 折扣:5.8折
    • 组学机器学习刘琦9787030761514科学出版社
    •   ( 90 条评论 )
    • 刘琦 /2025-01-01/ 科学出版社
    • 人工智能驱动的组学挖掘是数据驱动的生物医学研究的支撑技术。组学测序技术逐步向多尺度、跨模态、有扰动等方向发展,但体现出的高维度、高噪声、多模态、标记稀缺等特点,成为制约其有效挖掘的瓶颈。本书面向生命组学数据特点,较为系统和深入地对组学机器学习的主要研究范式、适用场景、分析方法、理论思想进行介绍。结合相应组学挖掘的具体研究案例,向读者展示组学人工智能驱动的生命健康交叉研究的绚烂图景。

    • ¥108.9 ¥198 折扣:5.5折
    • 机器学习:贝叶斯和优化方法(原书第2版)
    •   ( 513 条评论 )
    • 西格尔斯 /2022-04-25/ 机械工业出版社
    • 本书对所有重要的机器学习方法和新近研究趋势进行了深入探索,新版重写了关于神经网络和深度学习的章节,并扩展了关于贝叶斯学习的内容。书中首先讨论基础知识,包括均方、 小二乘和 似然方法,以及岭回归、贝叶斯决策理论分类、逻辑回归和决策树。然后介绍较新的技术,包括稀疏建模方法、再生核希尔伯特空间和支持向量机中的学习、关注EM算法的贝叶斯推理及其变分近似推理、蒙特卡罗方法、关注贝叶斯网络的概率图模型、隐马尔可夫模型和粒子滤波。此外,书中还讨论了降维、隐变量建模、统计参数估计、维纳和卡尔曼滤波、凸优化等技术。本书适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理和深度学习等课程的学生参考。

    • ¥161.8 ¥279 折扣:5.8折
    • 高斯过程机器学习及其工程应用
    •   ( 130 条评论 )
    • 苏国韶等 /2025-02-01/ 科学出版社
    • 本书首先较为系统全面地介绍了高斯过程回归、高斯过程分类的基本理论及实现方法,通过丰富的算例和公开的源程序代码,读者可很容易地理解高斯过程原理并将其应用于自己的研究领域;然后,通过丰富的工程应用实例,将高斯过程机器学习方法应用于土木水利工程中边坡变形非线性时间序列预测、地下工程岩体非线性行为预测与识别、水利工程复杂系统状态预测与识别、结构可靠性分析及结构优化设计等领域。

    • ¥129.7 ¥188 折扣:6.9折
    • 生成式AI的提示工程(影印版)
    •   ( 2 条评论 )
    • James Phoenix /2025-02-01/ 东南大学出版社
    • ChatGPT和DALL-E这样的大语言模型(LLM)和扩散模型拥有前所未有的潜力。通过使用互联网上的公共文本和图像进行训练,这些模型能够为各种任务提供帮助。而且,随着准入门槛的显著降低,几乎任何开发人员都可以利用AI模型来解决以前不适合自动化的问题。 借助本书,你将在生成式人工智能方面打下坚实的基础,学会如何在实践中应用这些模型。在将大语言模型和扩散模型集成到工作流中时,大多数开发人员很难获得可用于自动化系统的可靠结果。作者James Phoenix和Mike Taylor展示了如何通过提示工程原则在生产过程中有效使用AI。

    • ¥129.7 ¥188 折扣:6.9折
    • 机器学习高阶方法 套装全4本
    •   ( 3 条评论 )
    • [美] 高塔姆·库纳普利,[加] 迈克尔·兰哈姆唐源,[英]亚历山德罗·内格罗 /2024-10-01/ 清华大学出版社
    • 动手学图机器学习 识别关系是机器学习的基础。通过识别和分析数据中的关系,以图为核心的算法(如K-邻近或PageRank)显著提高了机器学习应用的效率。基于图的机器学习技术以全新方式为社交网络、欺诈检测、自然语言处理和推荐系统等领域的机器学习提供了强有力的支持。 《动手学图机器学习》是行业类的权威书籍,旨在倾授如何利用面向图的机器学习算法和工具,充分挖掘结构化和非结构化数据集中的自然关系,读者可以从中吸收图架构和图设计实践的精髓,并学会从容避开常见的陷阱。作者Alessandro Negro通过真实的应用示例,将GraphML(一种图建模语言)概念与实际任务完美联系起来,使读者能够更好地理解图技术在机器学习中的价值,并熟练应用该技术。 ● 大数据平台中的图 ● 推荐、自然语言处理、欺诈检测 ● 图算法 ● 与Neo4j图数据库协作

    • ¥211.9 ¥423.8 折扣:5折
    • Python深度学习+Pytorch计算机视觉目标检测图像处理(套装共2册)
    •   ( 6 条评论 )
    • /2024-06-02/ 机械工业出版社
    • 《PyTorch计算机视觉实战:目标检测、图像处理与深度学习》 深度学习是近年来计算机视觉应用在多个方面取得进步的驱动力。本书以实践为驱动,结合具体应用场景,基于真实数据集全面系统地介绍如何使用PyTorch解决50多个计算机视觉问题。 首先,你将学习使用NumPy和PyTorch从头开始构建神经网络(NN),并了解调整神经网络超参数的最佳实践。然后,你将学习如何使用卷积神经网络(CNN)和迁移学习完成图像分类任务,并理解其中的工作原理。随后,你将学习二维和三维多目标检测、图像分割、人体姿态估计等多个实际任务,并使用R-CNN、Fast R-CNN、Faster R-CNN、SSD、YOLO、U-Net、Mask R-CNN、Detectron2等框架实现这些任务。在自编码器和GAN部分,本书将指导你学习面部表情替换、面部图像生成和面部表情处理技术。之后,你将学习如何将计算机视觉与NLP技术(如LSTM、transfor

    • ¥149.6 ¥258 折扣:5.8折
    • 机器人自主智能导航
    •   ( 55 条评论 )
    • 郭迟等 /2025-05-01/ 科学出版社
    • 本书面向培养导航工程、机器人工程和人工智能复合型创新人才的需求,以移动机器人等无人系统为对象,系统讲述自主智能导航的概念内涵、技术框架和研究方法。全书内容主要包括机器人自主导航框架、环境语义感知、状态估计、同步定位与建图、视觉语义融合、导航规划与决策以及认知导航、多足机器人导航等方面的代表性技术和最新研究成果。本书力求反映智能导航技术的最新理论成果和应用案例,突出深度学习等AI技术在导航中的应用,并在各章节安排了相关工程实践教程。

    • ¥130.9 ¥238 折扣:5.5折
    • 大语言模型实用指南(影印版)
    •   ( 5 条评论 )
    • Jay Alammar /2025-02-01/ 东南大学出版社
    • 在过去的几年,AI获得了令人惊讶的新语言能力。在深度学习快速发展的推动下,语言AI系统比以往任何时候都能更好地编写和理解文本。这一趋势正在催生新功能、新产品,甚至新的行业。通过本书的可视化教育方式,读者将学习到现在使用这些功能所需的实用工具和概念。 你将了解如何将预训练的大语言模型用于文案撰写和摘要生成等应用场景,创建超越关键字匹配的语义搜索系统,以及使用现有库和预训练的模型进行文本分类、搜索和聚类。

    • ¥128.3 ¥186 折扣:6.9折
    • ChatGPT原理、架构与实战,大预言模型算法、预训练、迁移和调优,畅销书(套装共2册)
    •   ( 5 条评论 )
    • 程戈 刘聪 杜振东 涂铭 沈盛宇 /2024-06-02/ 机械工业出版社
    • 《ChatGPT原理与实战:大型语言模型的算法、技术和私有化》 赞誉 前言 第1章 了解ChatGPT1 1.1 ChatGPT的由来1 1.1.1 什么是ChatGPT2 1.1.2 ChatGPT的发展历史2 1.2 ChatGPT的工作流程3 1.3 ChatGPT用例3 1.3.1 日常任务4 1.3.2 编写代码5 1.3.3 文本生成6 1.3.4 办公自动化9 1.4 本章小结10 第2章 ChatGPT原理解构11 2.1 背景知识11 2.1.1 自然语言处理的发展历程12 2.1.2 大型语言模型的发展历程14 2.2 ChatGPT同类产品18 2.2.1 BlenderBot 3.018 2.2.2 LaMDA20 2.2.3 Sparrow23 2.3 ChatGPT的工作原理25 2.3.1 预训练与提示学习阶段26 2.3.2 结果评价与奖励建模阶段28 2.3.3 强化学习与自我进化阶段28 2.4 算法细节29 2.4.1 标注数据29 2.4.2 建模思路30 2.4.3 存在的问题30 2.5 关于ChatGPT的思考31 2.6 本章小结32 第3章 预训练语言模型33 3.1 Transformer结构33 3.2 基于Encoder结构的模型

    • ¥114.8 ¥198 折扣:5.8折
广告