《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
数学经常会让我们感到很困惑,数学教科书又枯燥无味,似乎只是众多的概念和定理证明的堆叠,而似乎没有尽头的题海更让我们对数学望而生畏。当遇到一个新的数学名词时,我们往往不知道为什么要引入这个概念,导致对其一知半解。 斯蒂芬 弗莱彻 休森所著的《数学桥》一书独辟蹊径,将数学知识以一种截然不同的方式展示给我们。它不是教科书,也不是普及读物,而是介于这两点之间的 普及性教科书 ;它以高中数学为起点,以一种轻松有趣的方式娓娓道来,向我们展示了大学数学中的核心内容和亮点。我们在欣赏那些令人惊叹的结果的同时,可以领略数学的自然之美和使用价值。 在《数学桥》一书中,每当引入一个新的数学概念,首先作者会介绍它的应用背景,让我们明白这个数学名词并不是数学家凭空捏造的,这样我们在学习一个数学理论时,也了解
上海交通大学钱学森研究中心编*的《智慧的钥匙--钱学森论系统科学》是一本以公务员和大学师生为主要读者对象的钱学森 论系统科学 的原*精选。初版于2005年4月,此次再版,增加了若干篇文章。 从事力学、导弹、航空、航天的研究和实践,这是人们 熟知 的钱学森。但是在1979年,钱学森说他研究力学已是 从前 的事了。钱学森又说: 我们完全可以建立起一个科学体系 去解决我们中国社会主义建设中的问题 。阅读本书,我们走进了钱学森晚年的学术世界,再次感受钱学森开创的 系统科学 在新时代背景下的应用价值和现实意义。
本书是一部畅销欧美的数学手册,内容全面而丰富,涵盖分析学、代数学、几何学、数学基础、变分法与优化、概率论与数理统训、讨算数学与科学计算、数学史书中收录有大量的无穷级数、特殊函数、积分、积分变换、数理统计以及物理学基本常数的表格;此外还附有极为丰富的重要数学文献目录。
《微积分的奇幻旅程》9787115525062 定价:35.00 苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦! 《数学定理的奇妙世界》9787115530004 定价:35.00 勾股定理应该是大家非常熟悉的数学定理,但你知道它在*初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
本丛书希望在中学数学和高等数学之间搭建一座桥梁,以中学数学为起点,逐步展示高等数学的基本思想和方法,便于大学新生快速适应高度抽象的高等数学。反过来,介绍如何把握高等数学的高观点,更好地服务于中学数学的教与学。 本书主要讲述复数在初等数学中的应用,包括解几何题、不等式和三角问题等。本书的最大创新在于不再将复数法视为一种 暴力 计算方法,而是将恒等式思想与复数结合,通过恒等式沟通几何、代数、三角、不等式之间的联系。复数恒等式方法不仅能解题,还能发现新命题,并关联多个看似不相关的命题,为初等数学研究提供新的探索思路。 本书案例翔实,思想新颖,方法简明,可启迪读者的思维,开阔读者的视野,提高读者提出问题、分析问题与解决问题的能力,适合学有余力的高中学生和教师、师范生以及数学教育研究者参
《算术研究》是被誉为“数学王子”的德国大数学家高斯的部杰作,该书写于1797年,1801年正式出版.这是一部用拉丁文写成的巨著,是数论的经典及*权威性的著作.在随后的200年时间中被翻译成多国文字,如德文、英文、俄文等. 这部著作在数学中的重要地位不亚于《圣经》在基督教中的地位,只有欧几里得的《几何原本》堪与之相比.因为高斯有一句名言:“数学是科学的女皇,数论是数学的女皇.”这部著作共七篇. 篇讨论一般的数的同余.并首次引进了同余记号,这是现代数学中无处不在的等价和分类概念出现在代数中的早的意义重大的例子. 第二篇讨论一次同余方程.其中严格证明了算术基本定理. 第三篇讨论幂的同余式.此篇详细讨论了高次同余式. 第四篇“二次同余方程”意义非同寻常.因为其中给出了二次互反律的证明,有人统计到21
本卷是这本《集合论导引》的开卷,分为三章,是后续两卷的基础。第1章主要是引进集合论的基本公理、基本概念、基本方法,并给出典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合等。第2章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第3章专门引进实数集合并对它进行系统分析。本卷将建立一系列基本概念,为全书作铺垫。
本书介绍黎曼几何中的重要技巧和定理,为满足那些希望专门研究黎曼几何的学生,书中还包含大量关于较深论题的背景材料。本书还介绍了最新的研究问题。各种练习散布全书,帮助读者深入理解书中内容。本书是为数不多的整合了黎曼几何的几何和分析两方面内容的专著之一,适合熟悉张量和斯托克斯定理等流形理论的读者,可作为研究生一学年课程的教材。
全书共二十章,前六章是属于基础知识,内容包括:整数分解、同余式、二次剩余、多项式之性质、素数分布概况、数论函数等;后十四章是就解析数论、代数数论、超越数论、数的几何这几个数论主要分支的基础部分加以介绍,内容包括:三角和、数的分拆、素数定理、连分数、不定方程、二元二次型、模变换、整数矩阵、p-adic数、代数数论导引、超越数、Waring问题与Prouhet-Tarry问题、数的几何等。书里引述了许多我国古代数学家在数论上的成就,也包含了许多近代数论中的重要成果,例如著者关于完整三角和及最小原根的结果、关于Prouhet-Tarry问题的结果、关于最小二次非剩余的结果、Selberg关于素数定理的初等证明,RothSiegel定理、关于Hilbert第七问题的证明、Siegel 关于二元二次型类数的定理,关于Waring问题的证明、关于问题的结果、Selberg的筛法等等;书中也包括
本卷是集合论的模型分析部分。在第一卷的基础上,本卷的主要任务是将逻辑植入集合论之中,并以此为基础实现三大目标:第一大目标是将同质子模型分析引入集合论,这是一种不同于组合分析的对无穷集合展开分析的基本方法;第二大目标则是建立集合论论域的具有典范作用的内模型??哥德尔可构造集论域,从而证明一般连续统假设和选择公理的相对相容性;第三大目标是建立集合论论域的具有典范意义的外模型??科恩的力迫扩张模型,从而证明连续统假设以及选择公理的相对独立性。这三大目标分为三章分别来实现。在一定意义上讲,每一章体现一种基本方法。这些基本方法是从事集合论研究的最基本的方法。
《量子力学的数学基础》是一本革命性的著作,它引起了理论物理学的巨大变化.在这本书中,20世纪最著名的数学家之一约翰?冯?诺依曼(John von Neumann)说明,通过探索量子力学的数学结构,可以获得对量子物理学的深入洞见.他首先介绍了埃尔米特算符和希尔伯特空间理论,它们提供了转换理论的框架,冯?诺依曼将其视为量子力学的确定形式.应用这一理论,他用严谨的数学来应对量子理论中的一些普遍问题,如量子统计力学以及测量过程.
本书是世界公认的《回归分析》标准教材(aleadingtextbookonregression)。不仅从理论上介绍了当今统计学中用到的传统回归方法,还补充介绍了尖端科学研究中不太常见的回归方法。难能可贵的是,作者有丰富的教学经验和实际应用经验,使得本书理论和应用并重,还给出实际应用中应该注意的问题。新版除利用Minitab,SAS,S-PLUS软件外,还融入了*流行的JMP软件和R软件,来阐释相关技术方法。配套资源很丰富,数据、教学PPT等可免费下载。
朱华伟著北京内容简介本书以国际数学奥林匹克及国内外高层次数学竞赛为背景,论述竞赛数学的形成背景,探讨竞赛数学的教育价值,归纳出竞赛数学的基本特征,把竞赛数学涉及的内容归为数列、不等式、多项式、函数方程、平面几何、数论、组合数学、组合几何8节,每一节内容包括背景分析、基本问题、方法技巧、概念定理、经典赛题,试图对数学竞赛所涉及的内容、方法、技巧作一系统总结和界定,并通过典型的赛题进行阐述.注意题目的来源与推广的讨论,重视新问题的收集与传统解法的优化,反映了国内外数学竞赛命题的**潮流.以此为基础,研究竞赛数学的命题原则及命题方法.
本书涵盖了观察、归纳与猜想,数学归纳法,枚举与筛选,整数的表示方法,逻辑类分法,从整体上看问题,化归,退中求进,类比与猜想,反证法,构造法,极端原理,局部调整法,夹逼,数形结合,复数与向量,变量代换法,奇偶分析,算两次,对应与配对,递推方法,抽屉原理,染色和赋值,不变量原理等数学竞赛中的解题策略.本书的特点:每章以经典的例子, 或者是以形象的生活事例, 或者是以对该策略进行简明的描述方式引入内容,并对这些丰富的例子给出详细的解答和点评?每章后面附有大量的问题
本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。
本书系统介绍了生物数学的基本建模思路、研究方法、数据处理和数值实现方法。简明扼要地阐述了数学与生物学交叉融合的必然性与重要性,以及生物数学在种群生态学、传染病疫情预测预警、药物设计、生物资源管理与有害生物控制、细胞与分子生物学等领域的经典应用,介绍了数据与生物数学模型对接分析中常用的三种参数估计方法。为了突出生物数学是如何服务于突发重大公共卫生事件或传染病防控的,实例研究中给出了2009年封校策略与甲型H1N1流感的控制、2014年广州登革热疫情大暴发关键因子分析、雾霾防控与流感样病例数据的多尺度模型分析。本书各章均配备了习题。为了方便读者和本书的完整性,第12章给出了本书需要用到的各种数学基础知识。
本书是现代图论教学中被广泛采用的研究生教材,它在前4版的基础上进行了进一步扩充和更新。其叙述的方式非常有特色:先解释定理的意义、证明的思路,并对主要思路进行描述,再提供详尽严格的证明,从而阐述图论的核心内容,让读者容易地了解这个领域的精髓所在。特别地,对若干图论中的重要定理给出多种证明。 本书囊括了当代图理论中最重要的专题,对每个专题从基本知识,到主要的结果和技巧进行介绍,并指出当前的研究主流和方向,是不可多得的兼顾教学和研究的专著。
《数学:科学的女王和仆人》二十章,内容涉及:代数、数论、逻辑、概率、无限集合与数学的基础、环、矩阵、转化、群、环以及拓扑学。讨论了毕达哥拉斯、阿基米德、牛顿、莱布尼茨、高斯、罗巴切夫斯基、伽罗瓦、黎曼、麦克斯韦、爱因斯坦等众多人物的贡献。书中的内容纯数学和应用数学各占一半,二者紧密结合。