《直来直去的微积分》从常识性的平凡道理出发,不用极限概念也不用无穷小概念,直截了当地定义了函数的导数,证明了导数的常用性质;定义了定积分,推出了微积分基本定理。严谨而不失直观的推理,颠覆了微积分必须以极限概念为基础的传统观点。全书共18章,前10章用作者发现的新方法构建了一元微积分的逻辑框架;后8章阐述新方法与传统体系的关系和接轨的方案,以及一些重要的微积分知识。《直来直去的微积分》化解了传统微积分教学的若干很大难点,为建立高中和大学的微积分新体系描绘了蓝图。《直来直去的微积分》可供中学和大学的数学教师、需要学习高等数学的大学生、数学爱好者、数学研究者,以及数学教育的研究者参考。
《混沌数学基础》主要从数学角度讲述混沌的概念、性质、基本理论与解析判定方法。《混沌数学基础》引入了Li—Yorke混沌与Devaney混沌概念并讨论其条件化简问题,证明了三角帐篷映射、蒙古包映射、符号空间上移位映射以及平面Smale马蹄映射等映射或系统的混沌性,给出了“周期三意味着混沌”的详细证明,证明了Devaney混沌与Li—Yorke混沌等在拓扑共轭下的不变性,讲述了拓扑熵及其与Li—Yorke混沌的关系等并展示了用Melinkov定理判别系统混沌性的方法。
本书是一本参赛的指导书,同时也是一本学习微积分的复习书。我们对微积分的内容进行整理归纳出知识要点,并通过典型例题的解法分析加以综合,使读者对微积分的每个知识点得以融会贯通。当前,我国从小学到高中都是围绕着升学的指标指挥棒转,学习为应试,其结果是:会套模式解题,不会尝试分析解决问题,长期的教育熏陶,使人形成了思维惯性。我们希望通过数学竞赛,通过本书的学习,能慢慢改变你的思维方式。数学需要运算能力、空间想象能力和抽象思维能力等,做习题对学好数学是重要的,在做运算难度大、步骤长及需要技巧的数学题的过程中有时最能获得数学知识,最能培养分析问题、解决问题的能力。看书和动手解题相结合必能使你学会如何去理解数学知识、如何去分析推理,从而对背景和题型稍新的数学问题不再束手无策,最终培养自己
本“导论”是中国科学技术大学非数学专业通用的讲义,是在40年的使用过程中,经过不断的修订、充实而成的。 与同类书相比,其广度有所拓宽,论证定理、公式逻辑严谨,编排内容循序渐进,阐述概念联系实际,深入浅出。 为加深对概念、定理等的理解和掌握,书中编有丰富的例题,以及习题和总复习题。 本“导论”分三册出版。本册讲述单变量函数微积分,中册讲述空间解析几何、多变量函数微积分,下册讲述组数与常微分方程。 本书另配学习辅导一册。 本册内容包括函数的极限,单变量函数的微分学,单变量函数的积分学,可积常微分方程共四章。 本“导论”可作理工科院校非数学专业或师范类院校数学专业的教材或教学参考书,也可供具有数学基础的读者自学。
本书的宗旨是帮助读者全面、系统地复习高等数学的内容,深入理解基本概念和基本理论,学习和掌握解题方法及解题技巧;追求的目标是通过对解题方法和技巧的分析,使读者能举一反三、触类旁通。本书每章均有一些读者想掌握、易掌握但尚未掌握或根本上不知道的方法和技巧,例如,一些类型的极限的教求法;有关微积分中值定理命题的证明;定积分、重积分的有关命题的证明;不等式的证明;无穷级数求和的方法;常微分方程中积分因子的求法等,均介绍了读者见所未见的新方法和新技巧。按当前考试特点及命题的发展趋势修订的本书,将更适合广大读者,尤其是考研应试者的需要。本书可作为本科生、大专生、电大、夜大、职大生的参考书,也可作为青年教师和科技工作者的参考书。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、深度学习、进化寻优算法、小波分析、粗糙集数据处理及分数阶微积分的计算方法等。 本书可作为一般读者学习和掌握MATLAB语言的教科书或高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,也可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询数学问题求解方法的手册。
本书主要介绍分数阶傅里叶变换的发展历程、定义及性质,基于分数阶傅里叶变换的分数阶算子和分数阶变换,分数阶傅里叶域滤波器以及线性调频信号的检测和参数估计问题;分数阶傅里叶域离散信号处理理论,包括分数阶傅里叶变换的离散算法、分数阶傅里叶域的采样以及多采样率滤波器组理论;分数阶傅里叶域随机信号处理理论;分数阶傅里叶变换在阵列信号处理、雷达、通信和图像处理中的应用;分数阶傅里叶变换的广义形式——线性正则变换。 本书可以作为相关研究人员的工具书和感兴趣读者的入门书籍,同时也是慕课“分数域信号与信息处理及其应用”的配套教材。