《高等数学同步辅导》与同济大学应用数学系编写的《高等数学》(本科少学时类型)教材相配套,分上、下两册,共十一章,包括函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分及其应用、微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、无穷级数等内容。每一章由内容摘要、典型例题与同步练习、练习题(题后附有参考答案)三部分组成。本书主要阐述了《高等数学》的基本理论和基本方法,剖析了《高等数学》的重点和难点。本书由周晖杰等主编。
本书介绍了线性代数的基本理论,主要包括用消元法解高阶方程组(包括适定、超定和欠定),用向量空间理解线性代数,以及线性变换的实际应用三个方面。通过近50个应用实例,介绍了它们的建模方法和解题程序。 本书的特色:(1) 实用化:本书以工科的后续课程及实际工程问题的解题需要选择内容,包含十几个应用例题;(2) 大众化:简化理论,使具有高中毕业程度的读者用较少的学习时间(约30学时)就能基本掌握;(3) 现代化:用计算机软件(MATLAB)来解决问题,不依靠笔算。 本书的读者对象为在职工程师(继续教育读物)、应用型技能型专业的学生(以本书为线性代数教材)以及普通高校本科学生(以本书为参考书)。
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
本书是理工科、技术学科、经济与管理、医学、农林等类学生学习高等数学课程的学习辅导书。全书共八章:极限与连续,一元函数微分学,一元函数积分学、空间解析几何、多元函数微分学,多元函数积分学、级数和常微分方程。本书重视教学内容与习题解析的同步衔接,由浅入深地讲解了大量例题,同时注重整合知识,科学地指导学生进行解题的训练与复习,并提供了进一步深入学习研究的习题。本书的深度和广度能适应大多数专业的数学学习需要,同时对于有志报考研究生的学生来说,也是一本较全面的复习用书。
本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书以大学复变函数的学习内容为依据,以*研究生考试大纲为依据安排章节。每章按题型分类,每个题型中包含题型特点及解题指导。为方便不同学习阶段的读者使用本书,编写过程中每章内容分为两部分:*部分为基本题型,作为在校生学习以上课程时的同步学习指导使用,其特点为所选均为基本题目;第二部分为综合提高题型,一方面可供读者在本课程结束时复习、总结使用,另一方面为备考硕士研究生入学考试的读者提供复习的工具。为加深读者学习的印象、提高学习效果,题中除包括解题过程外,还有思路探索、方法点击,进一步对题目进行分析、总结。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书是在教育大众化的新形势下,根据编者多年的教学实践,并结合“高等数学课程教学基本要求”编写的。 全书分上、下两册。上册共7章,内容包括一元函数的极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用、向量代数与空间解析几何。上册书后附有数学建模简介、上册部分习题答案与提示、基本初等函数的定义域、值域、主要性质及其图形一览表、极坐标系简介、二阶和三阶行列式简介、几种常用的曲线、积分简表、记号说明。下册共5章,内容包括多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数、微分方程。下册书后附有下册部分习题答案与提示。 书中附有光盘一张,光盘的内容有两部分:一部分是与本书配套的高等数学多媒体学习系统,另一部分是本书中全部练习题的解答(有解答过
本书着眼素质教育,注重数学内容、思维之间内在的联系,条理、结构、脉络清晰,能培养学生数学思维能力,便于教学与学习。在教材内容选取和讲述上,本着从简单到复杂、从特殊到一般的原则,力求深入浅出,“预、补结合”,难易结合,易教易学,主要内容包括:函数、极限、连续函数、导数与微分、微分中值定理与导数的应用、不定积分、定积分以及定积分的应用。为了增加可读性与趣味性,同时还增加了一些数学思想方法简介和数学家简介,兼顾各个层次民族预科学生学习状况,还分层次提供多种程度的习题。
本书是配套高等数学教学使用的学生课后练习的自测题,本书对学生掌握《高等数学》提出了较高要求,可作为对高等数学要求较高的专业的学生使用。
《线性代数附册 学习辅导与习题全解 同济·第七版》是与同济大学数学科学学院编《工程数学线性代数》第七版教材配套的学习辅导书,由同济大学作者团队根据教材内容和教学要求编写而成。该书在《工程数学线性代数》第六版附册(即辅导书)的基础上修改而成。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)、自测资源等多个栏目。其中“释疑解难”根据编者对课程内容的深刻理解和长期积累的丰富经验进行编写;“例题剖析与增补”充分挖掘例题的内涵,有助于读者举一反三,掌握学习方法;“习题解答”注重阐明解题的思想和方法,对全书习题给出规范解答。 《线性代数附册 学习辅导与习题全解 同济·第七版》具有相对的完整性和独立性,主要面向使用同济
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
本版《高等数学》上、下册系高等院校“新高职”或“一般本科”高等数学课程使用的教材,本教材基本保留了“高等数学”课程内容的传统风格,编写时参照了《高等数学课程教学基本要求》.本书上册包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分及向量代数与空间解析几何等7章;下册包括多元函数微分学、重积分、级数、微分方程及附录中的曲线积分与曲面积分等5章。全书基本上覆盖了现行理工科类院校《高等数学》课程(本科生)的全部教学内容. 本书既适用于全日制普通高等理丁科院校及经济、管理类院校的本科生作为高等数学课程的教材,又可以作为网络高等教育、函授、高等职业技术教育或成人继续教育的大专生作高等数学课程的教科书。
本套书按每章的知识结构、教学要求、学法指导、典型例题分析、同步练习、自测题等六个部分编排。根据五年制高等职业教育数学课程的教学目标及学生的实际,本套书的立足夯实基础,增强同步性,指导学生有效地独立获取知识,逐步培养学生的自学能力与应用能力,力求做到根据各章内容的不同特点简明扼要地说明知识要点、思想方法及注意点,精选例题,始终体现基础性。
本书从二次型,集合与映射,线性空间,线性变换, 矩阵,欧氏空间等方面,精选了494道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都有对本节主要定义,定理和重要结构作了简要的概述。可供高校师生,中学教师和广大数学爱好者学习参考。
《高等数学引论1(英文版)Introduction to Advanced Mathematics (1)》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授。全书包含了微积分、高等代数、常微分方程、复变函数论等内容。全书反映了作者的 数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲 的教学思想,还包括了作者的 要埋有伏笔 、 生书熟讲,熟书生温 等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 《高等数学引论1(英文版)Introduction to Advanced Mathematics (1)》 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容、多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第二册主要介绍复变函数
1.本书包含10套同步测试卷(每章2套) 2套期中测试卷 2套期末测试卷 4套考研真题(小册子) 答案详解; 2. A卷适于同步阶段检测、B卷适于考研复习训练,稳扎基础、综合提高,适用不同阶段的学习; 3.精选近几年考研真题,按节划分,实战演练,直击考研现场; 4. 透彻解析每道题目,点拨层层深入,引导式探索、归纳式总结,全面提升解题能力; 5.扫码赠送*考研真题、考研公式等资料,花一分钱,享多份内容。
《高等代数习题解(上)(修订版)》从多项式、行列式、线性议程组、矩阵等方面,精选了618道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都对本节主要定义、定理和理要结论作了简要的概述。内容丰富,重点突出,解答明确,尤其便于自学。可供高等院校师生、中学教师和广大数学爱好者以及有志报考研究生的人员学习参考。
本书是根据普通高等医药院校数学教学要求编写而成的数学基础课程教材,本书共分6章,分别阐述了函数、极限与连续;导数与微分;导数的应用;不定积分;定积分及其应用;常微分方程等医药学研究巾所涉及的数学基础知识.以基本概念、基本理论与数学方法为重点,结合医药实例对各章内容进行详细讲解,并配有适当的习题,本书在每章内容结束之后,均配有相应的数学历史知识与著名数学家生平以提高学生对数学的学习兴趣。
本书根据“农林院校大学数学——微积分教学基本要求”,结合作者多年教学经验,根据农科专业的特点,按照继承、发展与改革的精神编写而成,是集体智慧的结晶。本书共分9章,包括函数、极限与连续;导数与微分;小值定理与导数的应用;不定积分;定积分及其应用;多元函数微分学;二重积分;无穷级数;微分方程与差分方程。本书的特点是:突出应用背景,侧重微积分在农林科技中的应用,并从实际例子出发,引出微积分的一些基本概念、基本理论和方法;内容由简到难逐步展开,结构严谨,例题丰富,通俗易懂,难点分散;注重数学思想与数学文化的渗透。本书的编写参考了近年来全国硕士研究生入学统一考试数学考试大纲,内容上有所兼顾。本书可供农林类高等院校农科专业学生使用,并可作为相关专业师生的教学参考书。