《矩阵计算》是已故美国科学院院士、美国工程院院士吉恩 戈卢布(Gene H. Golub)等人的经典巨著,是矩阵计算领域的标准性参考文献。本书系统介绍了矩阵计算的基本理论和方法.内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和*小二乘法、特征值问题、Lanczos 方法、矩阵函数及专题讨论等.书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献.第4 版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,分析一些程序设计中常用的数学知识和数学方法。
《高等数学引论2(英文版)Introduction to Advanced Mathematics(2)》 是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授。全书包含了微积分、高等代数、常微分方程、复变函数论等内容。全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 《高等数学引论2(英文版)Introduction to Advanced Mathematics(2)》 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容、多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第二册主要介绍复变函
本书首先论述了广义Hamilton系统及广义Hamilton约束系统的几何积分方法,进而在较详细地介绍了李级数解法和李群李代数基本知识的基础上,又系统而深入地论述了更为广泛的一般形式的非线性动力学微分方程的李群积分方法。 本书可供高等院校应用数学专业、物理专业及力学专业的高年级学生、研究生、教师以及有关的科技工作者参考。
国际大学生数学竞赛是国际上较高层次的大学生参加的别数学竞赛。本书汇集了从第1届至17届国际大学生数学竞赛的试题及其解答.
《先驱者的足迹—高等数学的形成》一书于2004年由东北大学出版社印刷出版,并于2005年第二次印刷。现有的高等数学教材及习题集等书籍早已琳琅满目,单纯叙述数学史的书籍也日渐增多。但阐述高等数学主要概念的发展、演变历史以及其中包含的深刻思想的书籍并不多见。 版图书的出版目的在于为大学高等数学提供配套的读物作为课堂内容的补充,能够让学生了解到课本中所学内容的产生、发展、思想方法及相关发明者的奋斗过程。同时大学数学教师也需要这样的参考资料以丰富自己的教学内容。在河北省科学技术厅科普原创资助专项(项目编号:15K56227D)的资助下,第二版图书得以出版。这次再版图书将读者范围从大学生、大学数学教师以及数学爱好者,扩展到了中学生以及年龄更小的数学爱好者。内容仍以 版图书为基础,从数学的起源与早期发展、初
橄榄又称白榄、青果、黄榄,原产中国南部地区,是我国南方的热带南亚特产水果和药用植物。橄榄在我国已有2000多年的栽培历史,以福建、广东种植最多,广西、中国次之,海南、四川、重庆、云南、贵州、浙江等地也有一定栽培面积。 ?? ?? ??橄榄味酸涩,香甜之味久嚼方得,所以民俗取其苦尽甘来的寓意,把它当作吉祥如意的象征;橄榄气味特别清香,能增进食欲,舒畅神志,为茶余酒后佳品。除鲜食外,还可以开发出多种蜜饯、果汁等食品。橄榄属于卫生部批准的既是食品又是药物的69种物品之一,药用价值很高。近年的研究成果表明:橄榄富含钙和有机铬,在水果中名列前茅;橄榄性味甘酸涩平,有解毒生津,清肺利咽之功效,还有减肥降脂的作用,其根、果、仁、核、叶、花粉等均可入药。因此,橄榄综合开发利用价值很高。 ??本书主要介绍了橄榄生
全书基本涵盖了《高等数学》中所需的初等数学内容。本书按初等数学的学习顺序分八章进行编写,章代数式、第二章方程与不等式、第三章函数概念与二次函数、第四章指数函数与对数函数、第五章数列、第六章三角函数、第七章平面解析几何、第八章复数简介。每章后附有精选的习题,全书的最后给出了习题的答案和证明题的提示。本书的编写精简、扼要,能在较短的时间内补足学习《高等数学》所需的预备知识。 本书适合于各大专院校的学生复习;各类国家高等教育自学考试的学生、网络学院的学生、广播电大的学生自学补习或集体补习初等数学之用。
《高等数学学习指导与精练(理工类)》共分12章,主要内容有一元函数微积分学、微分方程、空间解析几何、多元函数微积分学、线面积分和无穷积数。每章包括知识要点、常见题型、常规训练和考研指导与训练,使读者在熟悉本章主要内容的基础上掌握各种解题方法与技巧,提高学习能力及应试能力。书末附有训练题的参考答案或简单提示。 《高等数学学习指导与精练(理工类)》可作为高等学校本科理工类各专业高等数学的辅助教材和硕士研究生入学考试(数一)复习参考用书,也可供工程技术人员参考。