本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
本书主要讲述工程及物理中常用的数学方法,全书共分6章:第l章主要围绕广义函数介绍线性泛函分析的最基础的内容;第2章介绍积分变换中最重要的两种变换:Fourier变换与Laplace变换;第3章介绍二阶常微分方程的幂级数解,对常点和正则奇点附近的幂级数解的结构进行了详细的讨论,并介绍了涉及的几种重要的特殊多项式;第4章介绍稳态问题的解析方法;第5章介绍演化方程的解析方法,它们是热传导方程与波动方程的初值及初边值问题的解法;第6章介绍曲线坐标系中的分离变量法,这里只考虑球坐标系与柱坐标系中的分离变量法。全书突出广义函数在数学物理问题求解中的作用,并从微分流形的概念出发,对曲线坐标系中的微分算子给出了严格的推导,自成一休。
几何是数学学习的基础之一,借助几何学,我们能搭建房屋、丈量土地、观测星空,还能设计滑梯、装饰地板……连一副小小的七巧板都能催生出众多数学成果。本书从建筑、测量、图形游戏等角度讲述了有趣的几何小故事,不仅涉及直线形、圆、非圆曲线、立体几何等基础几何学知识,而且加入了图论、拓扑、组合几何、非欧几何等主题,“扩大”了美妙的几何世界。本书阐释了几何学知识,同时介绍了古今中外关于几何的逸闻趣事,展现了图与形的自然之美。本书尤其适合小学高年级学生和中学生阅读。
本书主要包括 椭圆积分和算术几何平均迭代次数、算术几何平均迭代、雅可比三重积及其一些数论应用、高阶转换、模方程和代数近似值、代数函数的复杂性、初等函数的算法、一般方法及迭代、平方和的应用、经典近似、简化复杂性方法等内容。其具体内容如下:第一章, 椭圆积分与算术几何平均迭代;第2章,算术几何平均迭代;第3章,雅克比三重积及其一些数值理论应用;第4章,高阶转换;第5章,模方程和代数近似;第6章,代数函数的复杂性;第7章,初等函数的算法;第8章,常规方法与迭代;第9章,一些其他应用; 0章,处理初等函数的其他方法。本书适合于参加数学竞赛的选手以及数学爱好者参考使用。
本教材适用于各理工学科中非数学专业的高等数学课程.由于高等数学基本理论、基本方法和基本技能,特别是微积分的基本理论和方法在各理工类等学科中具有广泛的应用,所以本教材进一步完善了微积分方面的基本理论和方法.同时,因傅里叶级数在理工类学科中具有广泛的应用背景,所以本教材把傅里叶级数单独作为一章,其目的是强调傅里叶级数的重要性.本教材的特点是每一章节都列举了大量的例子,题型多样化,除了有利于学生掌握知识外,还有利于学生思维能力的培养;每一节附有习题,每一章附有总复习题.《BR》本教材共十二章,分上、下两册.上册内容:函数的极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,向量代数与空间解析几何;下册内容:多元函数微分法及其应用,重积分及其应用,曲线积分与曲面积分,
一、本章教材全解:先对每节所涉及的考研大纲进行解读,然后对本节涉及的基本概念、基本定理进行系统梳理,指出基本概念的理解和定理运用中的难点,解答学习过程中可能出现的疑难问题,并特别归纳出各类考试中经常考查的知识点。 二、典型例题解析:这一部分是每一节讲解中的核心内容,也是全书的核心内容。作者基于多年的教学经验和对研究生入学考试试题研究经验,将该节教材内容中学生需要掌握的、考研中经常考到的重点、难点、考点,归纳为一个个在考试中可能出现的基本题型,然后针对每一个基本题型,举出大量的精选例题深入讲解。 三、教材习题详解:为了方便读者对本课本所学过的知识进行复习巩固,对教材里全部习题作详细解答,在解题过程中,对部分有代表性的习题,设置了 思路探索 以引导读者尽快找到解决问题的思路和方法;
本书从大学生的自身发展和实际需要出发,以增强大学生的心理素质为目标,选择了大学生在成长过程中必然遇到的心理适应、自我发展、情绪管理、人际关系、恋爱婚姻、挫折应对、生涯规划等课题,在广泛吸收国内外*研究成果的基础上,进行详尽的阐述和诠释。
本书是根据高等院校各专业对 高等数学 的学习、复习及应试要求而编写的。本书主要内容包括函数与极限及连续、一元函数微分学、一元函数积分学、多元函数微分学、二重积分、常微分方程、无穷级数、向量代数与空间解析几何及多元函数微分学在几何上的应用、多元函数积分学及其应用。 本书各章节均由三部分组成, 即考点内容讲解、考点题型解析、经典习题与解答。 考点内容讲解 部分对每章的基本内容按照知识结构分为定义、性质和结论几个层面, 结合读者应掌握的重点作了比较详细的讲解、概括和总结; 考点题型解析 部分根据考试规律选择常考题型, 分类解析, 以题说法, 开拓思路, 开阔视野, 帮助读者提高分析问题、解决问题、变通问题的应试能力; 经典习题与解答 部分是对考点题型解析的有益补充, 是读者学习解题方法的训练场。 本书叙述通俗易
本书前两章研究出土算术文献的文本和思想内容。主要创新点是:提出两种整理出土算术文献文本的新方法;证明清华简《算表》有开平方功能;为简牍性质问题提供新线索。第三。章讨论学界判断算术文献成书年代的主流方法:该方法针对的是度量衡等时代信息 的零星信息,但在一本已经定型的书中,这些信息恰恰是 容易被后代改动的,不能作为主要依据。在此基础上,作者提出新的解决思路。第四章研究数学与儒学的互动。第五章研究数学与史学的互动,主要是解决其中跟数学有关的疑难问题,比如讨论《史记》记载的孔子俸禄和《汉书》记载的汉代“提封田”(领土面积)。后两章是目前学术界较少关注的。
本书根据*制定的“高等数学课程教学基本要求”,并参考数学三考研要求编写而成.全书共分10章,内容为函数与模型、函数极限与连续、导数与微分、微分中值定理和导数的应用、不定积分、定积分及其应用、微分方程与差分方程、多元函数微分学、二重积分和无穷级数与逼近,书末还附有数学软件Mathematica介绍及几种常用曲线的极坐标方程和部分习题参考答案.本书尽力体现教学改革精神,注意对学生的素质与能力的培养.书中加强对数学概念与理论从实际问题的引入和从几何与数值方面的分析,以够用、实用为度,注意“简易性”,尽量做到通俗易懂,由浅入深,富于启发,便于自学.
《高等数学(上下册)》是根据“高等学校本科教学质量与教学改革工程”的需要,参照高等学校数学与统计学教学指导委员会发布的《理工类本科数学基础课程教学基本要求》,参考《全国硕士研究生入学统一考试数学考试大纲》编写而成的。 《高等数学(上下册)》分上、下册出版,《高等数学(上下册)》为上册。上册内容包括:绪论,函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,定积分的应用,空间解析几何与矢量代数8章内容。书末附有初等数学常用知识、几种常用曲线及其方程、积分表、Mathematica软件包的常用系统函数。《高等数学(上下册)》每节后都配有精选的习题,既有基础题又有应用广泛的综合题。每章后还附有分层次教学测试练习题、Mathematica数学实验和数学欣赏。充分考虑分层次教学的需要,对全
本书分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、二重积分和三重积分、曲线积分与曲面积分、空间解析几何、级数、微分方程等九个专题,每个专题又含 基本概念和内容提要 竞赛题解析 练习题 三个部分。书中竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。另外,从近几年的硕士研究生入学考试试题中也挑选了部分好题,丰富了本书的内涵。
本书是按照新形势下教材改革的精神,结合国家工科类本科数学课程教学基本要求,以及国家重点大学的教学层次要求,汲取国内外教材的长处编写而成,本书分上、下两册。上册内容包括函数与极限,导数与微分,导数的应用,不定积分,定积分,定积分的应用,空间解析几何与向量代数。内容与中学数学相衔接,满足“高等数学课程教学基本要求”,还考虑到了研究生入学考试的需求。书中各章配制了二维码,读者可以通过扫码看授课视频来学习和巩固对应知识,同时,视频有助于教师的翻转课堂教学。 本书注重教学内容与体系整体优化,重视数学思想与方法,适当淡化运算技巧,充分重视培养学生应用数学知识解决实际问题的意识与能力,安排数学实验,使数学教学与计算机应用相结合。
本书根据“农林院校大学数学——微积分教学基本要求”,结合作者多年教学经验,根据农科专业的特点,按照继承、发展与改革的精神编写而成,是集体智慧的结晶。本书共分9章,包括函数、极限与连续;导数与微分;小值定理与导数的应用;不定积分;定积分及其应用;多元函数微分学;二重积分;无穷级数;微分方程与差分方程。本书的特点是:突出应用背景,侧重微积分在农林科技中的应用,并从实际例子出发,引出微积分的一些基本概念、基本理论和方法;内容由简到难逐步展开,结构严谨,例题丰富,通俗易懂,难点分散;注重数学思想与数学文化的渗透。本书的编写参考了近年来全国硕士研究生入学统一考试数学考试大纲,内容上有所兼顾。本书可供农林类高等院校农科专业学生使用,并可作为相关专业师生的教学参考书。
本书是《高等数学(经、管类)》教材的配套习题册, 各章节的编排与教材对应.本书共10章,包括函数与极限、导数与微分、微分中值定理及其应用、不定积分、定积分及其应用、空间解析几何初步、多元函数微分学、二重积分、无穷级数、微分方程与差分方程等内容.
苏保河等编的《高等数学/高等学校通识课程教材系列》共分为九章,包括函数与Mathematica简介、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、无穷级数、多元函数、微分方程与差分方程简介等内容。其中章至第六章由苏保河编写,第七章至第九章由刘中学编写。各章配有习题,并附有习题参考答案。本书的特点是将功能强大的计算机和数学软件 Mathematica融人高等数学教学之中,力图降低学生的学*担,提高学生的数学能力。参加本书审稿的有:吴广庆、杜萍、王为民、洪莉、张越等,全书由苏保河教授审核定稿。 《高等数学/高等学校通识课程教材系列》适用于经济管理类各专业本科生和对数学要求不太高的理工医农各专业本科生作为高等院校“高等数学”(或“微积分 ”)课程的教材或教学参考书;尤其适用于