素数论这一古老的数学分支,包含着许多诸如哥德巴赫问题那样的有趣而又艰深的难题。为了解决这些问题,素数论既借助也带动了其他数学分支的发展,因而素数论迄今仍是一个活跃的领域。 本书旨在介绍素数论的主要内容,书中谈到了许多的数论问题和猜想,简介了解决这些问题的方法和近代成果。介绍了我国数学家在这个领域里的重要贡献。本书的前一半只用到了中学的数学知识,而具备一些数学分析的知识后就可以读完后一半。全书写法简捷,深入浅出,可供中学生和广大数学爱好者阅读。
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
《代数》(第3版):As I see it, the graduate course in algebra must primarily prepare studentsto handle the algebra which they will meet in all of mathematics: topology,partial differential equations, differential geometry, algebraic geometry, analysis,and representation theory, not to speak of algebra itself and algebraic numbertheory with all its ramifications. Hence I have inserted throughout references topapers and books which have appeared during the last decades, to indicate someof the directions in which the algebraic foundations provided by thiook areused; I have accompanied these references with some motivating comments, toexplain how the topics of the present book fit into the mathematics that is tocome subsequently in various fields; and I have also mentioned some unsolvedproblems of mathematics in algebra and number theory. The abc conjecture isperhaps the most spectacular of these.
《加性数论:逆问题与和集几何》分为上下2卷。堆垒数论讨论的是很经典的直接问题。在这个问题中,首先假定有一个自然数集合a和大于等于2的整数h,定义的和集ha是由所有的h和a中元素乘积的和组成,试图描述和集ha的结构;相反地,在逆问题中,从和集ha开始,去寻找这样的一个集合a。近年来,有关整数有限集的逆问题方面取得了显著进展。特别地,freiman,kneser,plünnecke,vosper以及一些其他的学者在这方面做出了突出的贡献。《加性数论:逆问题与和集几何》中包括了这些结果,并且用freiman定理的ruzsa证明将《加性数论:逆问题与和集几何》的内容推向了高潮。《加性数论:逆问题与和集几何》读者对象:数学专业的研究生和相关专业的科研人员。
The "abstract,""formal"or"axiomatic"direction,to which the fresh impetus in algebra is euc ,haw led ,haw led to a numbe of new formulations of ideas,insight into new interrelations,and far-reaching results results,especially in group theory ,field theory,valuation theory, ideal theory,and the theory of hyperplex numbers.The principal objective of this reason ,genreral concepts and methods stand in the foregorund ,particular results which properly belong to classical algebra must also be give appropriate consideration within the framrwork of the modern development.
Fiveyearsago,Itaughtaone-quartercourseinhomologicalalgebra.Idiscoveredthattherewasnobookwhichwasreallysuitableasatextforsuchashortcourse,soIdecidedtowriteone.ThepointwastocoverbothExtandTotearly,andstillhaveenoughmaterialforalargercourse(onesemesterortwoquarters)goingoffinanyofseveralpossibledirections.Thisbookis'alsointendedtobereadableenoughforindependentstudy.
本书系统介绍有关数学难题——哥德巴赫猜想的研究成果,特别是我国数学家的重大贡献,同时介绍研究这一问题的一些重要方法。