《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。
《离散数学及其应用(原书第7版)》是经典的离散数学教材,为全球多所大学广为采用。《离散数学及其应用(原书第7版)》全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思想以及应用与建模。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目以及丰富的历史资料和网站资料。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。
方捷编著的《格论导引/现代数学基础》讲述格论的基本概念与基础知识。其内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;Heyting代数(或称剩余格);deMorgan代数;Priesdey拓扑对偶理论。在目前格论研究领域中,Priemey拓扑对偶空间理论是一个强有力的工具。为此,作者专门在第八章中给予详细的介绍,并附加一节介绍拓扑学的相关概念和基本性质,力求读者可以不借助拓扑学的教材也能理解、掌握相关的内容。《格论导引/现代数学基础》内容适合不同层次的读者,可作为数学与计算机类专业本科生或研究生格论课程的教材或教学参考书。
本书融有向图和无向图为一整体,系统地阐述了图论的基本概念、理论、方法及其算法,内容包括图的基本概念、Euler图与Hamilton图、图论算法、树及其应用、平面图、独立集与匹配、网络流和Petri网。 书中附有大量例题和习题,而且大部分习题有详细解答。 本书选材精炼全面,内容处理恰当且有新意,立论严谨,叙述条理清晰,语言流畅。 本书可用作高校计算机、电子、信息、管理、数学等专业本科生必修课,也可供相关专业的研究人员、教师及图论工作者参考。
《数学四色问题证明》详细地介绍了四色问题的数学证明方法,即在证明了三次平面图形成定理、边二色回路定理和面二色通路定理的基础上,进而证明了四色问题成立。这些证明的思路和方法,对于启发人们数学思考的多样化和推动基础数学研究的发展是大有益处的。本书由时徐俊杰著。
本书为组合数学的经典教材,共分为六章。书中列举了大量组合问题和例题,并尽可能使用初等方法来解决它们,以使广大读者能够掌握组合论的思想和方法。本书内容丰富,叙述由浅入深,每章都有习题,另附习题解答。 本书对初学组合论的读者是一本较好的入门书,对于中学教师、大学理工科学生和广大的工程技术人员以及从事科学研究的工作者也是一本较好的参考书。
本书共分六个部分,十四章,是论述代数基本定理以及证明“π与e是 数”的一本入门读物,也是一段经典数学的奇幻之旅。 在 部分中,从多项式方程的解和数系的扩张谈起,详述了有理数与循环小数,讨论了在黄金分割与黄金三角形,以及斐波那契数列中出现的无理数,由二元数的观点引入复数, 阐明了代数基本定理的内容。在第二部分中,用三种不同的方法说明或证明了代数基本定理,这就表明了复数域是代数闭域。在第三部分中,从定义圆周率π以及自然对数的底e开始, 严格地证明了它们是无理数。在第四部分中,阐明了关于多项式的一些概念和理论,其中有贝祖等式、高斯引理、艾森斯坦不可约判据,以及对称多项式基本定理等,也详述了有关扩域的一些理论,包括代数元、代数元域,以及单代数扩域等。在第五部分中,主要研究了代数扩域与有限扩
这本《线性代数核心思想及应用》由王卿文编著,运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当或略高于硕士研究生入学考试的典型、实用而新颖的 282道例题和141个习题,以此向读者展示线性代数核心思想和技术的具体应用。书末附有详细的习题答案。 《线性代数核心思想及应用》可供理工科专业的大学生、研究生、高校数学教师以及使用线性代数和矩阵论知识的科技工作者阅读使用。特别适合参加硕士研究生入学考试的考生以及参加大学生数学竞赛的学生参考。
高等代数是数学专业的重要基础课,它对培养学生的抽象思维能力、逻辑推理能力,以及后续课程的学习起着非常重要的作用,也是数学系硕士研究生入学考试的一门必考科目。高等代数主要包括多项式和线性代数两部分内容。线性代数又是工学及经济学科学生的基础课程,在硕士研究生入学统一考试数学试题中占有相当大的比例且是必考内容之一。这门课程的特点是内容比较抽象,概念、定理比较多,前后联系紧密,环环相扣,相互渗透。为了帮助考生加深对课程内容的理解,掌握解题的方法及技巧,提高应试能力,我们根据长期从事高等代数教学的经验及讲授考研辅导班的教案,编著成本书。
本书比较全面、系统地介绍了矩阵的基本理论、方法及其应用。全书分上、下两篇,共10章,分别介绍了线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非负矩阵与正矩阵、循环矩阵与素矩阵、矩阵和双矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等),辛空间与辛矩阵等内容。各章均配有数量的习题。附录中还给出了几套模拟自测试题。为了方便读者学习和参考,本书备有一张光盘,其中包含各章习题详解和模拟考试自测试题的解答提示等,供读者选用。 本书可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,并可供有关专
《线性代数》详尽地介绍了线性代数的基本理论和方法,以线性方程组为主线,以矩阵为主要研究对象,同时利用MATLAB软件解决了线性代数中的相关问题。 《线性代数》主要内容包括:行列式、矩阵及其运算、线性方程组、相似矩阵与二次型、线性空间与线性变换、MATLAB软件的应用,其中线性空间与线性变换可作为选学内容。本教材每章配有习题,并附有习题答案。 《线性代数》可作为高等院校非数学类专业线性代数的教科书或参考书,也可以作为教师的教学参考书。
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。