《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
抽象代数I是南开大学数学专业的必修课,抽象代数II是该专业本科生的选修课和研究生的必修课,结合代数是应用非常广泛的一种代数结构,将这些内容作为该课程的内容是非常合适的。本书是作者在长期教授该课程的基础上编写而成,内容包括结合代数,张量积、张量代数,二次型、Clifford代数,群代数及其表示,某些非结合代数。 本书力求深入浅出,循序渐进,特别注意与其他课程的联系,以使读者体会到“抽象代数是制造机器的机器”这一著名论述,更能体会到“玄之又玄,众妙之门”这样的哲理。
《线性代数/新核心理工基础教材》共分为五章,包括行列式,矩阵,线性方程组,矩阵的特征值与特征向量和二次型.《线性代数/新核心理工基础教材》吸取教材精华部分,依照文科生和留学生的知识结构要求及特点,围绕教学大纲内容,强调教材的层次性针对性,即便于文科生高等数学教导,也方便自学,各知识点后配有相应习题,并附有习题答案。 《线性代数/新核心理工基础教材》可作为外语学院、媒设学院、行政管理、国际经济与贸易、公共事业管理、留学生等的教学用书,也可供广大读者进行自学。
《线性代数解题方法技巧归纳(第3版)》是学习线性代数的指导书,也是备考硕士研究生的应试指南。它将线性代数主要内容按问题分类。通过对精选例题的分析。归纳解题方法和技巧,总结解题规律。例题和习题主要来自两部分:一部分是同济大学数学系编的《线性代数》(第五版)中较难解的典型习题,另一部分是历届全国硕士研究生入学考试数学试卷一和数学试卷二中的线性代数试题。《线性代数解题方法技巧归纳(第3版)》题型广泛。内容丰富,基本上覆盖了线性代数的主要内容。读者可从中加深理解线性代数的主要内容,熟练掌握各种解题方法、技巧和规律,提高解题和应试能力。 《线性代数解题方法技巧归纳(第3版)》可供本(专)科学生学习线性代数时参考;对于自学者和有志于攻读硕士研究生的青年。《线性代数解题方法技巧归纳(第3版)》更是
本教材是在多年教学实践的基础上、参照*关于全国非数学专业(经济管理类)硕士研究生考试数学(三)对线性代数部分的基本要求编写的,可作为高等学校经济管理类各专业学生的线性代数教材。全书共分5章,章介绍了行列式的概念、性质以及行列式的计算方法;第二章介绍了矩阵这一重要工具,讨论了矩阵的运算、矩阵的初等变换和矩阵的秩;第三章以矩阵为工具,讨论了线性方程组的解法和线性方程组解的结构;第四章介绍了矩阵的特征值和特征向量,并以矩阵的特征值和特征向量为工具研究了矩阵的对角化问题;第五章介绍了二次型概念、二次型化标准型和判断二次型为正定的方法。在内容的编写上,我们力求通俗易懂地介绍线性代数的基本理论和方法,用简单而有代表性的例题,使学生通过本教材的学习对线性代数的理论及方法有一个清楚的了解。针对线性
《线性代数》主要特点如下: ·理论与实际应用有机结合,大量的实际应用贯穿于理论讲解的始终,体现了线性代数在各个领域中的广泛应用。 ·习题安排科学合理,每一节的后面给出简单易算的习题,各章后面还有总习题,使学生有更多的演练机会,达到触类旁通的效果。 ·紧密结合数学软件Matlab,后一章介绍了目前国际公认的*秀的工程应用开发软件——Matlab的基本用法及与线性代数相关的基本命令。 ·数学名家介绍,每章后都介绍了一位数学名家的趣事,以增强读者的学习兴趣. 本教材由强静仁主编,参加编写的人员有强静仁、陈芬、孟晓华、吴小霞和许芳,在教材的编写过程中得到了许多同行的支持和帮助,在此表示感谢。 根据“培养综合素质高,知识结构合理,实践能力强的应用型人才”的基本原则,和授课学时少的教学
本书共分六个部分,十四章,是论述代数基本定理以及证明“π与e是 数”的一本入门读物,也是一段经典数学的奇幻之旅。 在 部分中,从多项式方程的解和数系的扩张谈起,详述了有理数与循环小数,讨论了在黄金分割与黄金三角形,以及斐波那契数列中出现的无理数,由二元数的观点引入复数, 阐明了代数基本定理的内容。在第二部分中,用三种不同的方法说明或证明了代数基本定理,这就表明了复数域是代数闭域。在第三部分中,从定义圆周率π以及自然对数的底e开始, 严格地证明了它们是无理数。在第四部分中,阐明了关于多项式的一些概念和理论,其中有贝祖等式、高斯引理、艾森斯坦不可约判据,以及对称多项式基本定理等,也详述了有关扩域的一些理论,包括代数元、代数元域,以及单代数扩域等。在第五部分中,主要研究了代数扩域与有限扩
本书是南开大学代数类课程整体规划系列教材的第二本,主要讲述群、环、模、域等理论中 基础的知识,以大学一年级的高等代数课程为基础.本书特别注意讲清定理、定义的来源以及其中包含的数学思想.书中配有大量精心挑选的基本习题和训练与提高题.
本书是南开大学代数类课程整体规划系列教材的第二本,主要讲述群、环、模、域等理论中 基础的知识,以大学一年级的高等代数课程为基础.本书特别注意讲清定理、定义的来源以及其中包含的数学思想.书中配有大量精心挑选的基本习题和训练与提高题.
本书是南开大学代数类课程整体规划系列教材的第二本,主要讲述群、环、模、域等理论中 基础的知识,以大学一年级的高等代数课程为基础.本书特别注意讲清定理、定义的来源以及其中包含的数学思想.书中配有大量精心挑选的基本习题和训练与提高题.