数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
用常规和母函数方法解决排列、组合、分配问题的技巧;用递推关系、容斥原理、棋盘多项式等求解计数问题的方法与技巧;图形可变换情况下染色方案的统计方法;存在性问题的证明方法与技巧。其中含实用例题300多个。
本书在第一版的基础上增加了与代数几何和组合数学相交叉的内容。 本书在本科抽象代数课程的基础上讲述了交换代数的基本的也是重要的Hilbert基定理、 Hilbert零点定理、理想的准素分解、相伴素理想、维数、重复度、正则环和正规环等内容.同时,对应地讨论了代数集的基本性质、代数集的分解和维数、代数簇的非奇异性和正规性等,还讨论了组合交换代数的基本内容。
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
本书内容包括行列式、矩阵、n维向量与线性方程组、线性空间、矩阵的对角化、实二次型和线'性变换等线'性代数的基本知识以及基本线性代数问题的计算机实现,通过将线性代数的基本知识与计算机相结合使学生能利用数学软件解决一些简单的线性代数的实际问题。书末还给出了有关的Matlab软件的使用说明。
抽象代数I是南开大学数学专业的必修课,抽象代数II是该专业本科生的选修课和研究生的必修课,结合代数是应用非常广泛的一种代数结构,将这些内容作为该课程的内容是非常合适的。本书是作者在长期教授该课程的基础上编写而成,内容包括结合代数,张量积、张量代数,二次型、Clifford代数,群代数及其表示,某些非结合代数。 本书力求深入浅出,循序渐进,特别注意与其他课程的联系,以使读者体会到“抽象代数是制造机器的机器”这一著名论述,更能体会到“玄之又玄,众妙之门”这样的哲理。
本书是理工科、技术学科、经济与管理等类学生学习《线性代数》课程的学习辅导书。全书共六章:矩阵与行列式,线性方程组,线性空间与线性变换、特征值与特征向量、Euclid空间与酉空间、二次型。本书重视基础知识的学习与基本技能的训练,强调教学内容与习题解析的同步衔接;注重整合知识,科学地指导学生进行解题的训练;书中还选择了许多综合性与灵活性问题,同时也对一些结论进行引申,引导学生独立思考和深入训练;在例题讲解中,适时穿插一些评注,起到画龙点睛的作用。本书还对全国和一些院校的硕士研究生入学考试试题适当地进行选择,有机地穿插在例题和习题之中。本书还在每小节之后都配置了一定量的习题,并附有答案或提示。 本书的深度和广度能适应大多数专业的线性代数知识的学习需要,可作为高等学校理科、工科、技术
《线性代数》主要特点如下: ·理论与实际应用有机结合,大量的实际应用贯穿于理论讲解的始终,体现了线性代数在各个领域中的广泛应用。 ·习题安排科学合理,每一节的后面给出简单易算的习题,各章后面还有总习题,使学生有更多的演练机会,达到触类旁通的效果。 ·紧密结合数学软件Matlab,后一章介绍了目前国际公认的*秀的工程应用开发软件——Matlab的基本用法及与线性代数相关的基本命令。 ·数学名家介绍,每章后都介绍了一位数学名家的趣事,以增强读者的学习兴趣. 本教材由强静仁主编,参加编写的人员有强静仁、陈芬、孟晓华、吴小霞和许芳,在教材的编写过程中得到了许多同行的支持和帮助,在此表示感谢。 根据“培养综合素质高,知识结构合理,实践能力强的应用型人才”的基本原则,和授课学时少的教学
该书编选了行列式、线性方程组、矩阵和二次型、向量空间及其线性变换、群、环、域、模、仿射空间等方面。书中含1938道习题并附有解答,数量多,内容丰富,由浅入深,部分题目难度大。不少题目是名家提供的,有些题目比较新颖,证明题较多,题多难度大,可供高等院校设置线性代数课程的专业的师生教学时参考。
《不等式的秘密(第二卷):高级不等式》你可以看到五种方法,这些方法不仅能提升解决不等式的能力,而且还可以减少问题的复杂性并给出漂亮的证明,在此,你可以找到证明不等式的现代方法:整合变量法、平方分析法、反证法、归纳法和经典不等式的使用方法,正如你阅读过的《不等式的秘密(第二卷):高级不等式》第一卷一样,这里有许多漂亮和困难的问题训练你使用这些方法的技能,我们希望,作者倾注在《不等式的秘密(第二卷):高级不等式》关于不等式方面的热情和汗水对你有用。
“线性代数”是普通高等院校普遍开设的一门重要数学基础课,本书根据*高等学校“线性代数教学基本要求”编写而成,涵盖了行列式、矩阵、线性方程组、相似矩阵、二次型、线性空间与线性变换等内容,同时编入了相应的数学实验。本书的编写服务于大众化高等教育的需要,符合包括独立学院在内的大多数普通高等院校的办学定位和人才培养目标,着力体现*[2007]1号文件和2号文件关于教材建设“分类指导、注重特色”的要求,在考虑课程自身的系统性和科学性的基础上,突出其应用性。内容安排由浅入深,先直观、后抽象,注重基本概念、基本方法和基本运算,淡化较难的证明及烦琐的计算,加强实际运用,紧密与计算机相结合,适当引入数学实验。书中基本概念的引入,力求直观,尽量减少其抽象性,如将线性相关性融入线性方程组中,以分散其难点,让学
本书是与《经济应用数学基础(二)·线性代数》(赵树螈主编,第四版,中国人民大学出版社)相配套的教学辅导用书。全书内容共分5章,每章5个版块,分别是“重点及知识点辅导与精析”“难点及典型例题辅导精析”“考点及考研真题辅导与精析”“课后习题解答”“同步自测题”。在对基本知识进行归纳、提炼和梳理的基础上,通过对典型例题及考研真题的详解与分析、解题方法的系统归纳,帮助读者深入掌握学习的重点、难点、易混淆的知识点及考研要点,对教材内容融会贯通,提高综合解题能力。 本书可作为高等院校文科和经管类专业线性代数课程的学习参考书及考研强化复习的指导书,也可作为教师的教学参考用书。
本书编者依据线性代数的学科特征,并融入自己多年来的教学经验,详解教材每一章的学习目的和要求,使学生在学习时心中有数,有的放矢。此外,还包括疑难解惑,使学生对学习中遇到的难点能迎刃而解,便于掌握线性代数的实质;例题解析,其中有介绍基本概念和基本运算方法的计算题和证明题,有一题多解的开拓思路题,也有较灵活的综合题。
本书分“解三次和四次多项式方程的故事”、“向五次方程进军”、“一些数学基础”、“扩域理论”、“尺规作图问题”、“两类重要的群与一类重要的扩域”、“伽罗瓦理论”及“伽罗瓦理论的应用”八个部分逐步展开,引导读者一步步去解决一系列重大的古典数学难题。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。