本书系统讲解偏微分方程及其定解问题的求解方法,通过大量实例讨论偏微分方程解的性质,特别强调傅里叶级数在求解边值问题中的作用。书中配有丰富的例题与习题,还采用“专题问题”较为系统地研究某个具体问题,补充和扩展了正文内容。 本书内容丰富、推导严密,包含大量物理背景,为理解和掌握偏微分方程提供了有效途径。本书可作为高等院校数学及相关专业学生的偏微分方程课程教材,同时也可作为工程技术人员、科技工作者的参考书。
复杂性理论主要研究决定解决算法问题的必要资源,以及利用可用资源可能得到的结果的界,而对这些界的深入理解可以防止寻求不存在的所谓有效算法。复杂性理论的新分支随着新的算法概念而不断涌现,其产物——如NP一完备性理论——已经影响到计算机科学的所有领域的发展。本书视随机化为一个关键概念,强调理论与实际应用的相互作用。本书论题始终强调复杂性理论对于当今计算机科学的重要意义,包含各种具体应用。
《希尔伯特空间及其应用导论(第3版)(英文版)》无论是学生还是科研人员,都将从《希尔伯特空间及其应用导论(第3版)(英文版)》的特别表达中受益。《希尔伯特空间及其应用导论(第3版)(英文版)》在原来版本的基础上做了不少改动,新增加了一部分讲述Sobolev空间,展开讲述了有限维赋范空间,有关小波的一章做了全面更新。并且包括了积分和微分方程、量子力学、化、变分和控制问题、逼近理论问题、非线性不稳定性和分岔理论的多种应用。在众多希尔伯特空间的书中,《希尔伯特空间及其应用导论(第3版)(英文版)》在讲述勒贝格积分方面独具特色。学习泛函分析和希尔伯特理论的老师和学生都十分推崇这本书作为教材或者参考书。