本书是一本调和分析的入门书。全书分为三部分,首先,给出了直线R上的Fourier分析理论,包括Fourier级数和Fourier变换;接着,将1R上的Fourier分析思想推广到局部紧Abel群(LCA群)上;最后,介绍了非交换群上调和分析技巧,特另抛,以Heisenberg群为例描述了非紧非交换群上的Fourier分析理论。每章后都配备了一定数量的习题,可作为本书内容的补充或延伸。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
本书是吉米多维奇主编的又一本极具影响的习题集,它适合工科院校高等数学课程,自1959年首次出版以来,已经修订再版多次,本书译自*2006年俄文版。 全书包含三千多道习题和三百多道例题,几乎涵盖了工科院校高等数学课程(除解析几何处)的所有内容,并对课程中要求牢固掌握的重要章节(求极限、微分法、函数作图、积分法、定积分的应用、级数和微分方程的解法)给了特别关注。除此之外,书中还包括场论,傅里叶方法和近似计算的习题。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
《数学分析教程》版在南京大学数学系连续 使用了近二十 年。本书第二版我们对全书作了详细修订。全书概念 准确,论证严 谨,文字浅显易懂,便于自学。丰富多彩的例题与多 层次的习题大 大加强了传统的分析技巧的训练,同时又注意适当引 进近代分析 的概念。本书可作为综合性大学、师范院校数学系各 专业的教材, 也可作为其他对数学要求较高的专业的教材或教学参 考书,还可 作为高等学校数学教师以及其他数学工作者参考用书 以及研究生 入学考试的复习用书。 全书分上下两册出版。上册共9章,包括极限理 论、一元函数 微积分、多元函数及其微分学。下册共10章,包括级 数理论、傅里 叶级数、反常积分与含参变量积分、线积分、面积分 与重积分、囿变 函数与RS积分、场论等。本书是下册部分,名为《数 学分析教程(下)》,由宋国柱、任福
《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
马昌凤编著的《现代数值分析》阐述了现代数值分析的基本理论和方法,包括数值分析的基本概念、非线性方程求根、解线性方程组的直接法和迭 代法、插值法与小二乘拟合、数值积分和数值微分、矩阵特征值问题的计算、常微分方程初值问题的数值解法以及蒙特卡伦方法简介等。书中有丰富 的例题、习题和上机实验题。本书既注重数值算法的实用性,又注意保持理论分析的严谨性,强调数值分析的思想和原理在计算机上的实现;选材恰当 。系统性强,行文通俗流畅,具有较强的可读性。 《现代数值分析》的建议课时为72课时(其中含上机实验12课时),可作为数学与应用数学、信息与计算科学、计算机科学与技术以及统计学专业等 本科生 数值分析 课程的教材或教学参考书,也可以作为理工科研究生 数值分析 课程的教材或教学参者书。
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
《工科数学分析教程(上册)}是一本信息化研究型教材本书包括数列极限、函数极限与连续、导数的计算与应用、泰勒公式、不定积分、定积分的应用、广义积分、数项级数.本书体系内容由浅入深,符舍学生认知规律.每章都有提高课,内容包括混沌现象与极限、连续函数不动点定理以及应用、极值问题与数学建模、泰勒公式与科学计算、积分算子的磨光性质以及应用等系列内容,初步为学生打开现代数学的窗口.同时每章都设置了系列探索类问题,包括理论问题、应用问题,培养学生应用数学解决实际问题的能力.本教材有与之配套的MOOC 课程,充分利用多媒体信息技术,将复杂数学问题直观化,图文并茂视频课为读者营造一对一的视频授课环境,通过扫描教材中的二维码进入视频课的学习,使得学生对数学问题的理解更通透.
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
200多个例题中包括了一些比较新鲜有趣的问题,作为教材的补充也选择了一些帮助理解基本概念、掌握基本方法的问题.书末给出两个附录:附录一给出了南京大学出版社出版的《数学分析教程》(许绍溥、宋国柱等编)一书中*章到第十九章的总习题及其解答;附录二介绍了南京大学硕士研究生入学考试的数学分析试题(1992~2003年)及其解答。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
这本由孙雨雷和冯君淑主编的《数值分析 第五版 同步辅导及习题全解(新版)》是为了配合清华大学出版社出版的、李庆扬、王能超、易大义主编的《数值分析》(第五版)教材而编写的配套辅导书。本书共九章,分别介绍数值分析与科学计算引论、插值法、函数逼近与快速傅里叶变换、数值积分与数值微分、解线性方程组的直接方法、解线性方程组的迭代法、非线性方程与方程组的数值解法、矩阵特征值计算、常微分方程初值问题数值解法。全书按教材内容,对各章的重点、难点做了较深刻的分析。针对各章节全部习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,各章还附有典型例题与解题技巧,以及历年考研真题评析。《数值分析 第五版 同步辅导及习题全解(新版)》可作为工科各专业、本科学生、《