递推数列多年来一直是数学竞赛的命题来源,对于今天的竞赛选手及教练来说已不是难题。而利用差分方法求解数列问题有很多优点。《差分方程的拉格朗日方法:从一道2011年全国高考理科试题的解法谈起》从一道2011年全国理科试题的解法谈起,首先全文摘录了一篇作者23年前发表的小文章。然后再进行现实的联系并进而介绍差分方程理论的完整体系。并进一步介绍了俄罗斯数学家在差分方程解的稳定性方面的前沿结果。 《差分方程的拉格朗日方法:从一道2011年全国高考理科试题的解法谈起》适合于的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等院校教师和学生的学习用书及数学爱好者的兴趣读物。
Zygmund教授的这部著作1935年于波兰华沙首次出版时,便在学术界确立了其典范地位。版虽然对细节问题没有展开详尽讨论,但对当时的主要研究成果都给予了简要说明。1959年,大学出版社分两卷出版了该书第2版,书中加进了自版以来在三角级数。傅里叶级数以及纯数学各相关分支中的研究成果,对原书做了重大扩充。而第3版是将第2版的两卷合在一起,芝加哥大学数学系主任Robert Fefferman还特意为其作序,介绍作者的生平轶事、对数学分析的贡献以及本书的学术价值。
Zygmund教授的这部著作1935年于波兰华沙首次出版时,便在学术界确立了其典范地位。版虽然对细节问题没有展开详尽讨论,但对当时的主要研究成果都给予了简要说明。1959年,大学出版社分两卷出版了该书第2版,书中加进了自版以来在三角级数。傅里叶级数以及纯数学各相关分支中的研究成果,对原书做了重大扩充。而第3版是将第2版的两卷合在一起,芝加哥大学数学系主任Robert Fefferman还特意为其作序,介绍作者的生平轶事、对数学分析的贡献以及本书的学术价值。
Sincethepublicationofmylecturenotes,FunctionalDifferentialEquationsintheAppliedMathematicalSciencesseries,manynewdevelopmentshaveoccurred.Asaconsequence,itwasdecidednottomakeafewcorrectionsandadditionsforasecondeditionofthosenotes,buttopresentamoreprehensivetheory.Thepresentworkattemptstoconsolidatethoseelementsofthetheorywhichhavestabilizedandalsotoincluderecentdirectionsofresearch.
函数的凸性和广义凸性是运筹学和经济学研究中的重要基础理论.本书版系统地介绍数值函数的各种类型的广义凸性以及它们在运筹学和经济学中的一些应用.主要内容包括:凸集与凸函数、拟凸函数、可微函数的广义凸性、广义凸性与性条件、不变凸性及其推广、广义单调性与广义凸性、二次函数的广义凸性和几类分式函数的广义凸性.在此基础上,第二版增加了若干新的成果和使用较多的基本结果,调整了一些内容顺序,某些定理进行了简化证明等.
本书为“科学计算及其软件教学丛书”之一,主要介绍小波分析的基本理论、方法和应用,其内容包括:有限离散小波,无限离散小波,实数集上的小波,多种重要和常用的小波,以及小波在信息处理和科学计算领域的一些重要应用。全书由浅入深,注重原理,联系应用,每章附有习题,可供练习。本书可作为信息与计算科学、数学与应用数学,以及相近专业的高年级的和参考书,也可供从事信息处理或科学与工程计算的科技人员学习参考,具有数学分析和线性代数知识的读者也可以自学本书。
《中学数学解题前沿方法荟要:解方程及方程组的方法》以通俗的语言、简洁流畅的叙述,针对解方程及方程组方法的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通.这种分类介绍的解题方法,我们将其称为解题的“个类方法”.
《中学数学解题前沿方法荟要:解方程及方程组的方法》以通俗的语言、简洁流畅的叙述,针对解方程及方程组方法的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通.这种分类介绍的解题方法,我们将其称为解题的“个类方法”.
本书主要介绍了复变函数的微积分理论,并强调从实分析的某些内容过渡到复分析的过程中可能出现的新现象及遇到的障碍。前7章为复变函数课程的基本内容,包括复数、复变函数(微积分理论)、全纯函数、调和函数、解析函数、奇点理论和亚纯函数等内容。第8章和第9章介绍三个重要的特殊函数:Γ函数、Riemannζ函数、Weierstrassp函数。本书适合高校数学专业师生及相关专业科研人员阅读参考。
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
本书共有15章,其基本内容分为3个部分:医学伦理学概述(章~第三章)、医学实践与伦理要求(第四章~第十一章)、医学实践中的伦理问题(第十二章~第十五章)。主要介绍医学伦理学的发展以及基本原则和规范,医学实践过程中必须遵循的伦理要求,医学实践中的有关伦理问题。本书是一本比较全面系统论述当代医学伦理学理论和实践的读物,既可以作为高等医学院校的教材,又可以作为一般读者了解和掌握医学伦理问题的参考书。
30年来,动力系统的数学理论与应用有了很大发展。30多年前还没有高速的台式计算机和计算机图像,“混沌”一词也没有在数学界使用,而对于微分方程与动力系统的研究兴趣主要于数学界中比较小的范围。到今天,处处有计算机,求微分方程近似解的软件包已得到广泛运用,使人们从图形中就能看到结果。对于非线性微分方程的分析已为广大学者所接受,一些复杂的动力学行为,如马蹄映射、同宿轨、Lorenz系统中揭示出来的复杂现象,以及数学方面的分析,使学者们确信简单的稳定运动,如平衡态和周期解己不总是微分方程解的最重要的行为,而混沌现象揭示出来的美妙性态正促使各个领域的科学家与工程师细心关注在他们自己领域中提出的重要的微分方程及其混沌特性。动力系统现象在今天已出现在几乎每个科学领域中,从化学中的振荡Belousov-Zhabotinsky反应到
本书是本科生和研究生学习实分析和泛函分析的参考书,实分析部分在前四章,它围绕测度和积分的基本理论和方法展开,内容包括:集合与关系、测度与可测函数、积分及其性质、微分和不定积分、泛函分析部分在后四章,它围绕点集分析与线性算子的基本理论与方法展开,内容包括:距离与点集分析、有界线性算子、内积空间的几何、线性算子谱理论等。这两部分是本科生和研究生学习其他数理学科的重要理论基础,书中总结了实分析与泛函分析的主要理论与方法,为使学习者提高用集合分析的办法解决问题的能力,每节配备了一些例题和习题以及习题解答与提示。