本书主要介绍图像偏微分方程的数值解法。介绍了轮廓线匹配算法、图像匹配算法和基于扩散方程的保边界降噪声算法。最后还介绍了近年发展较快的水平集法。本书解说精辟、推理严密、叙述简洁。 本书可供大专院校图像处理和模式识别专业师生作教材使用,也可供相关专业人士在科研中作参考。
《数学解题与研究丛书:集合、函数与方程》是一部数学教学参考用书,共分为两部分:集合与逻辑、函数与方程,系统、详尽地阐述了数学解题技巧,有理论、有实践。《数学解题与研究丛书:集合、函数与方程》注重科学性、系统性和趣味性,全书共含50篇小文章,每篇文章各自独立成文,所以《数学解题与研究丛书:集合、函数与方程》可系统性地研读,也可有选择性地阅读。《数学解题与研究丛书:集合、函数与方程》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
本书在读者已有微积分学和线性代数等基础知识的基础上比较详细地介绍了泛函分析的基础理论及其应用,包括kbesgue测度与Lebesgue积分的理论基础;度量空间的基本概念;赋范线性空间和Banach空间的基本概念;Banach空间的基本理论;不动点定理及其应用;内积空间和Hilbert空间的基本概念和基本理论;线性算子谱理论基础;非线性算子的理论基础和Banach空间中的微积分学;上下解方法及其应用和拓扑度理论及其应用。本书适合高等院校数学类专业(包括军事院校数学类合训专业)高年级学生和理工专业硕士/博士研究生学习和研究之用,也可供高校教师教学和科研参考。
本书在读者已有微积分学和线性代数等基础知识的基础上比较详细地介绍了泛函分析的基础理论及其应用,包括kbesgue测度与Lebesgue积分的理论基础;度量空间的基本概念;赋范线性空间和Banach空间的基本概念;Banach空间的基本理论;不动点定理及其应用;内积空间和Hilbert空间的基本概念和基本理论;线性算子谱理论基础;非线性算子的理论基础和Banach空间中的微积分学;上下解方法及其应用和拓扑度理论及其应用。本书适合高等院校数学类专业(包括军事院校数学类合训专业)高年级学生和理工专业硕士/博士研究生学习和研究之用,也可供高校教师教学和科研参考。
本书是Folland教授的名著《实分析》的第二版。与版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
This book is an abridged version of our two-volume opus Convex Analysis and Minimization Algorithms [18], about which we have received very positive feedback from users, readers, lecturers ever since it was published-by Springer-Verlag in 1993. Its pedagogical qualities were particularly appreciated, in the bination with a rather advanced technical material.
本书是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法和力学中的变分原理及其应用。其中一部分内容是作者多年来的研究成果,特别是提出了完全泛函的极值函数定理,统一了变分法中的各种欧拉方程。本书也可供有关专业的教师和科技人员参考。 本书概念清楚,逻辑清晰,内容丰富,深入浅出,便于自学,既注重方法的介绍,又不失数学的系统性、科学性和严谨性。书中列有大量例题和习题,并附有中英文索引。为了帮助
本书是一本内容十分翔实的实分析教材。它包含集论,点集拓扑。测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含 Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理, Calderon—Zygmund分解定理,Fefferman—Stein定理。Marcinkiewlcz插定理等实分析中有用的内容。 本书内容由浅入深。读者具有扎实的数学分析知识基础便可学习本书,学完本书的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。
This book is an abridged version of our two-volume opus Convex Analysis and Minimization Algorithms [18], about which we have received very positive feedback from users, readers, lecturers ever since it was published-by Springer-Verlag in 1993. Its pedagogical qualities were particularly appreciated, in the combination with a rather advanced technical material.
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
This book is an abridged version of our two-volume opus Convex Analysis and Minimization Algorithms [18], about which we have received very positive feedback from users, readers, lecturers ever since it was published-by Springer-Verlag in 1993. Its pedagogical qualities were particularly appreciated, in the bination with a rather advanced technical material.
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。 本书可供大学数学专业、应用数学专业和计算数学专业的高年级学生、研究生、教师以及相关的科技工作者阅读、参考。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
戴嘉尊编著的《微分方程数值解法(第2版21世纪高等学校)》包括常微分方程数值解法、抛物型方程的差分方法、椭圆型方程的差分方法、双曲型方程的差分方法、非线性双曲型守恒律方程的差分方法、有限元法简介等共6章,每章后面附有数量的习题供练习之用。《微分方程数值解法(第2版21世纪高等学校)》适合于数学类本科生“微分方程数值解法”课程教学之用,也适用于工科研究生及计算数学与应用数学教学与科研人员,并可供有关工程技术人员参考。
赵爱民和李美丽等编著的《微分方程基本理论》是在作者多年主讲研究生“微分方程基本理论”课程讲稿的基础上整理而成的。主要内容包括绪论(解的存在性、性及对初值与参数的光滑依赖性)、边值问题和Sturm比较理论、稳定性理论基础、定性理论基础、平面分支理论初步和算子半群与发展方程理论基础等,绝大部分章节都配有适量且难易兼顾的习题。本书以现代数学观点介绍微分方程的经典理论,同时简洁介绍了分支理论和发展方程的新方法和新进展。 《微分方程基本理论》可作为高等院校数学专业高年级本科生和研究生的常微分方程现代理论专业课程的和教师的参考书,也可供相关专业的科研人员参考。