本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
本书是2007年7月23日至27日在美国普渡大学举办的 L函数 会议的论文集。这次会议是为了祝贺Freydoon Shahidi 的60岁生日而举办的,他被公认在Langlands纲领方面做出了开创性的贡献。 书中的文章从各个角度描绘了该领域的研究现状。这些文章展示了自守形式及其L函数在几何、分析和数论等方面的新成果,涉及局部与整体理论。 本书主题包括Langlands函子性,Rankin-Selberg方法,Langlands-Shahidi方法,主题 Galois群,Shimura簇,轨道积分,p进群的表示,Plancherel公式及其推论,Gross-Prasad 猜想,等等。 书中还收录了一篇介绍 Freydoon Shahidi在本领域所做贡献的综述性文章,此文可作为该领域的导引。 本书对于专家们是有用的参考资料,而刚入门的研究人员可以利用本书来查阅Langlands纲领的主要结果。
本书以反应扩散方程的基本理论为基础,以生物、物理和化学等自然学科为背景,将几类主要的微分方程、积分方程作为研究对象,介绍非局部反应扩散方程的基本理论、基本方法以及一些常见的应用。内容包括非局部反应扩散方程的行波解、对应柯西问题解的适定性以及斑图动力学理论;主要用到的方法有Leray-Schauder度理论、稳定性分析、单调迭代方法、常数变易法、上下解方法、多尺度分析、Turing分支理论、数值模拟等。本书所介绍的内容简明扼要,深入浅出,并尽量反映该内容的思想本质,从多个角度阐述了非局部反应扩散方程的核心内容。书中彩图可扫封底二维码查看。
本书从数学学科的特色、人文欣赏的视野着手,运用通俗的语言、生动的例子介绍函数的数学文化内涵及其函数知识在现实世界中的广泛应用主要内容包括函数概念与函数图像常识及其美学欣赏、相遇比例函数、相遇增长函数、相遇周期函数的数学文化内涵欣赏及其实际应用。
系统介绍有理逼近的基本理论和方法及其在工作中的应用.
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
本书以反散射理论、Riemann-Hilbert(RH)方法和非线性速降法为工具,系统分析散焦NLS方程在有限密度初值下解的长时间渐近性和孤子分解,主题部分取材于Cuccagna,Jerkins和作者最新研究成果。内容主要包括散焦NLS方程初值的RH问题表示、RH问题的可解性、在孤子区域中的孤子分解和在无孤子区域中的长时间渐近性。
本书主旨是以能量临界Schrodinger方程、聚焦非线性Klein-Gordon方程为范例,向读者介绍近年来非线性色散(波)方程研究中派生的Bourgain能量归纳法、陶哲轩I-团队的相互作用Morawetz估计及其局部化技术、Kenig-Merle在色散框架下发展的变分原理与刚性方法。主要涉及非线性色散方程的物理背景、Fourier分析基础及Strichartz估计、变分法与椭圆理论:基态解及其变分刻画、集中紧致原理与轮廓分解、非聚焦能量临界Schrodinger方程的整体适定性与散射理论、聚焦能量临界Schrodinger方程及非线性Klein-Gordon方程的散射理论。与此同时,以评述的形式给出其他非线性色散方程的研究进展及相关参考文献。希望通过本书使青年学者掌握如何用现代分析,特别是调和分析来研究非线性色散方程,尽快进入该研究领域的前沿。
本书全面介绍了求解非线性规划问题的无罚函数方法。从基础概念出发,逐步讲解罚函数方法、传统与修正滤子方法、非单调滤子方法、自适应滤子方法以及其他无罚函数方法等。书中不仅提供了理论分析,还结合了丰富的数值实验,以证明算法的收敛性和有效性。本书融合了深人的理论探讨和实际案例,为研究生提供了坚实的理论基础和实践操作指南。书中对算法的收敛性进行了详尽的分析,并介绍了多种最优化问题的求解技巧,旨在帮助读者深人掌握最优化领域的知识。
本书是针对高等院校工科专业编写的复变函数与积分变换教材,内容共分为8章,包括复数与复变函数、解析函数、复变函数的积分、解析函数的幂级数表示、留数及其应用、Fourier变换、Laplace变换和共形映射等。全书内容叙述简洁,通俗易懂,适于自学。 本书既可作为高校工科专业的复变函数与积分变换课程的教材,也可作为理科非数学专业师生及工程技术人员的参考用书。