本书是(英文版)一本关于曲线和曲面微分几何的导论,介绍微分几何这两个方面的局部特性与整体特性。同传统的微分几何教材不同,本书更广泛地应用初等线性代数的知识,并把重点放在基本的几何论据上。 为取得概念与实际材料之间的适度平衡,本书还包含大量的例子,并合理安排习题,其中包含经典微分几何的某些实际题材。
FollowingKeller[119]wecalltwoproblemsinversetoeachotheriftheformulationofeachofthemrequiresfullorpartialknowledgeoftheother.Bythisdefinition,itisobviouslyarbitrarywhichofthetwoproblemswecallthedirectandwhichwecalltheinverseproblem.Butusually,oneoftheproblemshasbeenstudiedearlierand,perhaps,inmoredetail.Thisoneisusuallycalledthedirectproblem,whereastheotheristheinverseproblem.However,thereisoftenanother,moreimportantdifferencebetweenthesetwoproblems.Hadamard(see[91])introducedtheconceptofawell-posedproblem,originatingfromthephilosophythatthemathematicalmodelofaphysicalproblemhastohavethepropertiesofuniqueness,existence,andstabilityofthesolution.Ifoneofthepropertiesfailstohold,hecalledtheproblemiU-posed.Itturnsoutthatmanyinterestingandimportantinverseproblemsinscienceleadtoill-posedproblems,,whilethecorrespondingdirectproblemsarewell-posed.Often,existenceanduniquenesscanbeforcedbyenlargingorreducingthesolutionspace(thespaceof"models").Forrestoringstability,however,onehastochangethetopologyofthespaces,whichisinm
本书包括6章正文和5个附录,主要介绍有物理背景的一些非线性偏微分方程孤立子解形成的机理,求解这类方程的反散射变换方法,Backlund变换方法,相似约化方法,若干种函数变换方法,以及与非线性偏微分方程可积性有关的一些知识,可以作为应用数学、应用物理以及非线性科学相关方向研究生的教材或教学参考书,也可作为高年级大学生及从事非线性科学研究的科研人员和教师的学习和参考用书。
《微分几何专题(英文版)》包含了陈省身先生有关微分几何文章的选集以及他在普林斯顿高等研究院的一些讲义,大部分未公开出版或是只在小范围内发表过。陈省身是现代微分几何之父,《微分几何专题(英文版)》给读者展示了微分几何与其他学科如拓扑学和李群联系的广阔前景,作者对各个学科联系的把握非常精准并且正中要点。陈省身曾在《Atiyah选集》的前言中说过:“无论新的东西如何被改进或者精化,但原始的文章总是直接和达要点……”《微分几何专题(英文版)》对想学习现代微分几何的初学者非常有价值,也对专家们重新思考微分几何有益。
本书是本基于对称和不变性原理讲述常微分方程和偏微分方程的教科书。本书从最基本的经典方法讲起,用到的李群分析也是用于研究和解决数学模型中的解析非线性问题的最广泛和有效的方法,且包含众多的主题,是一本非常灵活和实用的、适合数学、物理和工程学专业本科生和研究生的教材或教学参考书。本书的特点是:1.包含特为初学者,简明和自包含的基本经典方法的介绍。2.轻松进入李群分析方法的学习。3.本书所描述的方法有着广泛的应用。4.友好的描述方式和实用的例子使本书拥有众多的读者群。作者Nail,瑞士科学家,世界公认的微分方程对称分析领域领军人员之一。
本书介绍了大气海洋中的波动学及围绕Boussinesq方程组展开的各种偏微分方程组。主要内容包括:分层流动的性质,强分层流动的线性和非线性不稳定性,旋转浅水理论,色散波理论及其在地球物理中的应用,强分层流动方程组,旋转Boussinesq方程组与分层准地转方程组,快波平均引论,以及赤道大气海洋波动学理论。本书可作为数学专业、地球物理专业高年级本科生、研究生或相关专业科研人员的参考书。
Banach空间中的常微分方程理论是近二三十年发展起来的一个新的数学分支,它把常微分方程理论和泛函分析理论结合起来,利用泛函分析方法研究Banach空间中的常微分方程。它的理论在无穷常微分方程组、临界点理论、偏微分方程、不动点定理等多方面都有广泛的应用。特别是,临界点理论中常用的最速下降流线,即以是Banach空间常微分程方程理论作基础。由于它的重要性,又比较新,故被列为我国自然科学基金重点资助的项目之一。在我国,研究Banach空间常微分方程理论的人很少,1985年,在第五届全国非线性泛函分析会议上,作者和孙经先副教授合作了《Banach空间中的常微分方程理论》综合报告,引起了许多人的兴趣。本书显然可作为综合性大学和高等师范大学有关专业的研究生教材,也可供有关教师和科技大工作者进行科研时参考。