微积分是人类智慧伟大的成就之一.300年前,受天文学方面问题的启发,牛顿(Newton)和莱布尼茨(Leibniz)阐发了微积分的诸多概念.自那时以来,每一世纪都证明了微积分在阐明数学、物理科学、工程学以及社会和生物科学方面问题的强大威力.由于微积分具有将复杂问题归纳为简单规则和步骤的非凡能力,迄今已获得相当大的成功.正因为如此,微积分的教学也存在着危险:很可能将这一学科仅仅教授成一些规则和步骤,从而既忽略了数学本身,也忽略了它的实际价值.由于美国国家科学基金会的慷慨资助,我们以哈佛大学为首的合作组,
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了国内外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课
本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,即可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
为什么教科书里的微积分那么难懂?不要怕,这本简单、有趣的微积分入门书,帮你7天搞定!我们害怕微积分,是因为有一大堆抽象、难懂的概念、公式。其实,知道这些公式、概念是怎样创造出来的,你就能很容易理解掌握,再也不会再害怕!微积分到底有什么用?微分的结果是斜率,可以分析变化,股票、汇率与摄影都会用到;积分是导数的逆运算,目的在于找出变化的规律,求出面积!
本书是美国著名数学家彼得·拉克斯与康奈尔大学数学教授玛丽亚·特雷尔合著的单变量微积分教材,内容覆盖了一元微积分的基础,包括:数列的极限、函数的连续性、函数的微分、可微函数的基本理论、导数的应用、函数的积分、积分的方法、积分的近似计算,以及微分方程。另有两章介绍复数与概率。本书与拉克斯的另一著名教材《线性代数及其应用》简明清晰、行云流水的风格一致,通过引入许多背景自然的应用实例,两位作者致力于引导读者对微积分这一重要的基础课题获得理解。本书末尾还提供了部分习题的答案。
本书系统介绍偏微分方向的基本概念及其应用,主要内容包括热传导方程、分离变量法、傅里叶级数、施图姆一刘维尔特征值问题、偏微分方程的有限差分数值法、非齐次问题、定常问题的格式函数、无穷域问题、波动方程和热传导方程的格林函数、线性和拟线性波动方程的特征线法以及偏微分方程的拉普拉斯变换解法等。 本书注重应用、内容广泛、层次清晰,适合作为高等院校理工科非数字专业高年级本科生或研究生数学物理方程课程的教材或教学参考书,还可以作为数学专业同类课程的参考书。