本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
按《微积分》(经管类)(第三版)内容展开,体例和内容包括:基本要求、内容提要、释疑解难、例题分析、考题选讲、复习题和自测题及复习题解答与自测题解答。内容充实,选题灵活,题型丰富,覆盖面广.本书第三版是在第二版的基础上,根据**关于《经济和管理类本科数学基础课程教学基本要求》,结合近几年教学改革实践和新形势下教材改革的精神以及我们在使用本书第二版过程中的教学积累和经验进行综合修订。在修订中,我们保留了第二版的体系和风格,吸收了使用本书第二版的同行们提出的意见和建议,特别是吸收了使用本书第二版的学生们的意见和建议,使得本书第三版能更好的适合当前教学的需要,更好的贴近学生学习的需要。
本套书由《微积分I(第二版)》、《微积分II(第二版)》两本书组成.《微积分I(第二版)》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何.在附录中简介了行列式和矩阵的部分内容.《微积分II(第二版)》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线积分、曲面积分、场论初步、数项级数、幂级数、傅里叶级数、广义积分的敛散性的判别法、常微分方程初步等.本套书继承了微积分的传统特色,内容安排紧凑合理,例题精练,习题量适难易恰当.
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干最大难点, 为建立高中和大学的微积分新体系描绘了蓝图.
《微积分(经管类)(第三版)》是根据教育*“经济管理类本科数学基础课程教学基本要求”,并结合编者长期在教学线积累的丰富教学经验编写而成.《微积分(经管类)(第三版)》共11章,内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数微分学、二重积分、无穷级数、微分方程、差分方程.《微积分(经管类)(第三版)》按节配置适量习题,每章配有总习题,书末附有习题参考答案及提示,便于读者参考.《微积分(经管类)(第三版)》以经济类、管理类学生易于接受的方式,科学、系统地介绍了微分与积分的基本内容,重点介绍了微积分的方法及其在经济、管理中的应用.
The first volume of the Chinese edition of this book waspublished in July 1997, and the second volume was published in June2000. In July 2000, upon the readers' request, we corrected severaltypographical errors and republished the first volume. In this edition, minor typographical errors are corrected, and asmall paragraph has been added to section 5.5.4 in Chapter 5, whilethe remaining text is unchanged. We would like to take this opportunity to express our sincerethanks to our teachers,friends, and readers for their encouragementand support.
本套书由《微积分Ⅰ》、《微积分Ⅱ》两《微积分II》组成。《微积分Ⅰ》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何。在附录中简介了行列式和矩阵的部分内容。《微积分Ⅱ》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线积分、曲面积分、场论初步、数项级数、幂级数、傅里叶级数、广义积分的敛散性的判别法、常微分方程初步等。本套书继承了微积分的传统特色,内容安排紧凑合理,例题精练,习题量适难易恰当。 本套书可供综合性大学、理工科大学、师范院校作为教材,也可供相关专业的工程技术人员参考阅读。
本书是高等院校信息与计算科学专业基础主干课程教材之一.为适应当前的教学需要,在内容的组织和叙述上做了新的有益的尝试.《BR》全书共2篇4个部分,介绍了数值解法中主要的两种方法——有限差分法和有限元法.依托经典的一维和二维问题,论述了算法的构造思想及其误差分析理论,具有系统性和实用性.本书还选配了适量的实习题和复习题,有利于读者巩固所掌握的有关理论和方法,为进一步的专题学习和研究打下一定的基础.
本书系统地总结了作者和国内外数学家在无限维空间上测度和积分论研究中所得到的某些结果,部分尚属初次发表。全书包括六章:测度论的某些补充知识,正泛函与算子环的表示,具拟不变测度的群上调和分析,线性拓扑空间上的拟不变测度及调和分析,Gauss测度,Rose-Einstein场交换关系的表示。另有两个附录,介绍阅读本书所需的一些知识。本书供高等学校数学系高年级学生、研究生及这方面的数学工作者、理论物理工作者参考。
本书是本基于对称和不变性原理讲述常微分方程和偏微分方程的教科书。本书从基本的经典方法讲起,用到的李群分析也是用于研究和解决数学模型中的解析非线性问题的广泛和有效的方法,且包含众多的主题,是一本非常灵活和实用的、适合数学、物理和工程学专业本科生和研究生的教材或教学参考书。本书的特点是:1. 包含特为初学者,简明和自包含的基本经典方法的介绍。2.轻松进入李群分析方法的学习。3.本书所描述的方法有着广泛的应用。4.友好的描述方式和实用的例子使本书拥有众多的读者群。作者Nail, 瑞士科学家,世界公认的微分方程对称分析领域领军人员之一。
《微积分教与学要览/大学数学教与学研究系列》参照经、管、文科《微积分》教学的基本内容,根据各章的内容分节论述微积分教与学的问题,每节均由教学目标:内容提要、疑点解析、例题分析和练习题五个部分组成,教学目标根据微积分教学大纲的基本要求,逐点进行编写,目的是把教学目标交给学生,使学生了解教学大纲的精神和教师的要求,从而增强学习的主动性和目的性;内容提要以各节的知识结构为框架,用树形图表的方式,简明扼要地总结、概括各节的主要内容,从而使学生掌握各个知识之问的联系,使零散的知识形成系统的知识结构;疑点解析围绕教学的重点、难点,从不同侧面阐述有关知识点的数学思想、数学方法和教学方法等方面的内容,从而加深知识的理解、解决微积分教学中可能出现的一些问题;例题分析选择、构造一些比较典型的题
《微积分学导论》是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今理工科数学教育的发展,并满足培养学生的要求。分上、下两册出版,内容包含微积分学的核心内容及其应用。 本书是下册,内容包括多变量函数的微分学、多变量函数的积分学、无穷级数、含参变量积分、傅里叶分析等五章。本书的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象和直观。为加深对概念、定理等的理解和掌握,书中编有丰富的例题,并有详细的解答,可给学
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的*进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了国内外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究
《微积分学导论》是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今理工科数学教育的发展,并满足培养学生的要求。分上、下两册出版,内容包含微积分学的核心内容及其应用。 本书是下册,内容包括多变量函数的微分学、多变量函数的积分学、无穷级数、含参变量积分、傅里叶分析等五章。本书的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象和直观。为加深对概念、定理等的理解和掌握,书中编有丰富的例题,并有详细的解答,可给