本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课"高等数学(微积分) 中与单变量函数相关知识点,也就是经典教材《高等数学》上册中的绝大多数知识点。这些知识点是相关专业的在校、考研学生必须掌握的,也是相关从业人员深造所应的。 本书围绕着"线性相似 ,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识,逻辑上层层递进,再辅以精心挑选的各种例题、生活案例等,大大降低了学习门槛。
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
微分几何讲义(修订版)
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第1卷):数学基础及其理论》介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而又清晰的分析与介绍。
本文集是为纪念浙大著名教授董光超80岁生日而在杭州召开的“偏微分方程及其应用国际会议”的文集。包括10-15篇由在偏微分方程及其应用方面的国际一流专家的文章。偏微分方程有着广泛的应用,诸如:微分几何、复几何、流体力学、金融数学等。本文集收集的文章对很多当今*数学研究分支的了全面系统的介绍。对研究生和研究人员是很好的参考。This volume of 15 contributed papers is a tribute to Professor Guangchang Dong on the occasion of his 80th birthday. These are survey or expository papers onrecent developments in the theory of partial differential equations and their applications in geometry, physics, finance, and other areas, which also reflect Professor Dong’s main research interests in his career. This volume is intended for researchers and graduate studentsto catch up recent developments in these areas.
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第Ⅱ卷应用英文版)(精)》由Vladimir V.Uchaikin著,本书的第Ⅰ卷介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而义清晰的分析与介绍。第Ⅱ卷是应用篇,讲述了分数维微积分在物理学中的实际的应用。在湍流与半导体、等离子与热力学、力学与量子光学、纳米物理学与天体物理学等学科应用方面,本书给读者展示一个全新的处理方式和新锐的视角。 本书适合于对概率和统计、数学建模和数值模拟方面感兴趣
泰勒编著的这本《偏微分方程(第3卷第2版)》主要论述非线性偏微分方程。其中包括经典连续统力学方程和微分几何中的方程,以及非线性扩散问题。书中论及的分析方法包括索伯列夫空间理论、h-lder空间理论、hardy空间理论和morrey空间理论。本书目次如下:非线性分析用的泛函空间和算子理论;非线性椭圆方程;非线性抛物方程;非线性双曲方程;不可压缩流用的欧拉方程和navier-stokes方程;爱因斯坦方程。 本书读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
本书列入《非线性物理科学》,和Springer合作出版。作者Abdul-Majid Wazwaz为美国Saint Xavier大学教授。本书分成两部分:部分讨论了偏微分方程领域的一些*发展的方法,线性的、非线性的,齐次的、非齐次的。本部分的特点是介绍这些*的可行性方法而并不需要理解额外的抽象理论和概念。清晰且非常透彻地论述了初值和边界值问题,且含有众多精心选择的例子和练习。 第二部分揭示了孤波理论,通过提供各种材料使得本书是包含众多方法的孤波理论标准的书籍。本书的读者对象是应用数学、物理学和工程学的研究生及相关领域的研究人员。
由詹姆斯??斯图尔特(James Stewart)编写的《微积分》采用直观易懂的方式,向读者介绍了关于微积分学的相关概念和知识以及分析解决问题的方法。本书根据当今中国大学微积分课程的教学目标,对詹姆斯??斯图尔特编写的《微积分》进行了取舍、浓缩,以适应中国高校教学和中国学生需求的特点和学校教学的课时要求。 本书*后成书包括十二章以及学习微积分所需的初等数学知识介绍。每一章的内容包含知识讲解、例题解析以及练习题三部分。书后附录中附有练习题的答案。此外,为了便于读者更好地理解数学中的一些英文关键术语的中文含义,我们在每一章的章末增加了关键术语的中英文对照表,读者在学习过程中可以参考。 本书既可以作为高等院校微积分课程的双语教材和教师参考书,也可作为国际培训中所需微积分教学的专业的数学教材。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
《微积分入门(修订版)》为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出“严密”与“直观”的结合,重视数学中的“和谐”与“美感”,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。