《现代几何学 方法与应用》是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
本书从14个方面介绍了各类范例200余道一题多证(解)。主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例。本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧。 本书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的“竞赛数学”或“初等数学研究”等课程的数学参考书。
本书主要介绍点集拓扑学的基本知识。全书分为十七讲,包括预备知识,拓扑空间的基本概念,拓扑空间之间的连续映射,拓扑基与邻域基,Tychonoff积空间,分离性公理,Urysohn引理与完全正则空间,点网与滤子,拓扑空间的紧致性,列紧性、可数紧性与伪紧性,局部紧性与Baire空间,仿紧性,连通性与道路连通性,度量空间的完备性与完备化,商空间与商映射,函数空间,同伦映射与空间的同伦等价。每讲内容介绍都比较深入,并配备大量的例题和习题。
本书着眼于有向图, 将无向图作为特例,在一定的深度和广度上系统地阐述了图论的基本概念、理论和方法以及基本应用。全书内容共分7章,包括Euler回与Hamilton圈、树与图空间、平面图、网络流与连通度、匹配与独立集、染色理论、图与群,以及图在矩阵论、组合数学、组合优化、运筹学、线性规划、电子学以及通信和计算机科学等领域的应用。每章分为理论和应用两部分,并配有大量图形, 章末有小结和进一步阅读的建议。各章内容之间联系紧密,对许多 的定理给出了 简单的多种证明。每节末都有大量习题,书末附有参考文献、记号和名词索引。 本书既可用作高校数学、应用数学、运筹学、计算机科学、信息科学、管理科学等专业和相关研究所研究生和高年级本科生的选修课教材,也可用作高校和研究所图论及相关专业的教师和研究人员的参考书。
《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》是从常庚哲命的一道CMO试题的积分解法谈起,进而介绍了面积原理问题.《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》共有9章:第1章引言,第2章历史与经典结果,第3章近代理论介绍——关于高维求积公式的某些简单定理,第4章二次及三次的高维求积公式,第5章构造数值积分公式的算子方法,第6章高维积分的“降维法”与二维求积公式的一种构造法,第7章高维矩形区域上的数值积分与误差估计,第8章多元周期函数的数值积分与误差估计,第9章高维数值积分公式的误差界限决定法。 《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》适合大、中学师生及数学爱好者阅读及收藏。
本书旨在让读者了解最简单的初等几何工具,由于它们是初等的,并且经常能得到简洁的证明,故而频繁地被用于数学奥林匹克竞赛中。本书共分为两部分,第1部分介绍了常用的定理和工具,每章结尾都有一些练习题,它们可以利用正文提供的工具进行解答;第2部分是第1部分中的练习题的解答,所给出的解答既不是唯一的,也不是最简单的,它们反映了作者考虑构形的方式,并应用了特定的工具作答。 本书可供几何爱好者以及备战数学奥林匹克竞赛的学生们使用。
本书力图呈现一些证明三维空间中数学的成果及技巧,尽可能提升读者形象化思考能力的技巧,在结果与方法上采用立体几何的一些传统名称,即棱柱、棱锥、帕拉图体(正多面体)、圆柱、圆锥和球。本书共10章,分别用一章的篇幅叙述以下方面的内容:计数、表示法、切割法、截面、交、迭代以及折叠和展开等,同时每一章还给出一组挑战题供读者进一步探索各种性质以及每一种方法的应用,在各章结束后,作者还给出了书中挑战题的提示和解答。
本书从14个方面介绍了各类范例200余道一题多证(解)。主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例。本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧。 本书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的“竞赛数学”或“初等数学研究”等课程的数学参考书。
本书分上、下篇,以66个专题的形式介绍了平面几何中 基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。 全书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师,以及数学奥林匹克教练员使用,也可作为高等师范院校数学教育专业以及教师进修数学教育研讨班开设的“竞赛数学”或“初等数学研究”等课程的教学参考书。 本书是上篇。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚至成为解决很多几何难题的通法。本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学习几何有一点帮助 .
这本书结构简单, 章从基本的几何原理讲起,为讨论基本定理及理解后面的较难的概念奠定了必要的基础。第2章围绕通常的代数问题展开,给出了在相应的代数问题中化解几何问题的方法。随后入门题和提高题作为对前面理论的加强而列出,每一个问题都有解答,且从多个角度对题目进行了有意义的讨论,而不 于几何方面。许多问题都介绍了多种解法,可使读者 好地理解几何不等式的使用范围和通用性。
电路分析是电路设计、优化和应用的基础,采用拓扑方法求解以元件符号参数描述的符号电路,则是电路理论的一个重要分支。笔者涉及这一课题,经过多年的研究,发现电路的固有多项式中的有效项与电路图中满足一定条件的一对树有着一一对应的关系,定义了有效树和有效双树的概念,提出并证明了网络多项式展开的双树定理,给出了寻找全部有效树和有效双树并确定其值的展开图法。该方法直接对电路的拓扑图进行运算,通过边的短路、开路、“着色”和“去色”运算,将图分解、展开、化简,由图的展开式得到图的权表达式,从而得到网络多项式。该方法适用于包含四种受控源和零任偶等有源元件在内的一般线性有源电路,不出现冗余项,在寻找有效项的同时确定该项的正负系数。本书偏重基础理论和基本算法,内容独立完整,知识自主创新,而且自成体
全套书对1978~2016年的全国高中数学联赛(包括全国女子竞赛、西部竞赛、东南竞赛、北方竞赛)、中国数学奥林匹克竞赛(CMO,即全国中学生数学冬令营)、中国 队队员选拔赛以及IMO试题中的200余道平面几何试题进行了诠释,每道试题给出了尽可能多的解法(多的有近30种解法)及命题背景,以150个专题讲座分4卷的形式对试题所涉及的有关知识或相关背景进行了深入的探讨,揭示了有关平面几何试题的一些命题途径。本套书极大地拓展了读者的视野,可 地开启读者的思维,扎实地训练其基本功。 本套书适合于广大数学爱好者,初、高中数学竞赛选手,初、高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及 级、省级骨 培训班参考使用。 本书为第2卷。
......
沈顺清著的《拓扑 缘体(英文版)》基于修正狄拉克方程,全面描述了一维到三维拓扑 缘体。书中公式推导简明易懂,给出了一系列边界附近束缚态解的推导,并描述了解的存在条件。引进了拓扑 缘不变性及其在一些列系统中的应用,如一维聚乙炔到二维量子自旋霍尔效应、p波超导体、三维拓扑 缘体、超导体和超流。这些都可以很好地帮助学习者 好的理解这个神奇的领域。 本书是一部拓扑 缘体专业及相关领域研究生和科研人员的教材和参考用书。
本书揭示了几何和拓扑之间的相互关系,为广大读者介绍了现代几何的基本概况。书的开始介绍了三种简单的面,欧几里得面、球面和双曲平面。运用等距同构群的有效机理,并且将这些原理延伸到常曲率的所有可以用合适的同构方法获得的曲面。紧接着主要是从拓扑和群论的观点出发,讲述一些欧几里得曲面和球面的分类,较为详细地讨论了一些有双曲曲面。由于常曲率曲面理论和现代数学有很大的联系,该书是一本理想的学习几何的入门教程,用简单易行的方法介绍了曲率、群作用和覆盖面。这些理论融合了许多经典的概念,如,复分析、微分几何、拓扑、组合群论和比较热门的分形几何和弦理论。本书内容自成体系,在预备知识部分包括一些线性代数、微积分、基本群论和基本拓扑。书中不少例子和每章节后面的练习可以帮助读者好地理解书中知识。
本书分为两大部分,理论部分和问题部分。在开篇的理论部分中,读者可以从中回顾和学习一些基本知识以及解题技巧。在问题部分中,作者从相对简单的竞赛题到高难度的奥林匹克竞赛题中精挑细选出一部分几何问题,不同风格与难度的例题和题目将经典几何的迷人之美展现的淋漓尽致,每一道题目都提供了详细的解法,将解题步骤的判断方法与思路传递给读者,并且很多题目都配有多种解法。 本书适合数学竞赛选手、教师及数学爱好者参考阅读。