三角形是几何图形中最基本的图形,是研究其他图形的先行组织者,是衔接图形与代数知识的支架,被称为古希腊几何学研究的主角。三角形以它独特的、神奇的魅力,搭建了几何学习的重要桥梁。本书将帮助学生直观理解和掌握三角形,经历得到三角形的基本性质,形成几何直观和推理能力,发展直观想象、逻辑推理、数学抽象等核心素养;并基于三角形的研究路径,研究三角形的定义、表示、画法、元素、性质、判定、特殊三角形、三角形关系、三角形性质应用,深度迁移得到几何图形探究的方法。本书将在双新的视觉下,循着三角形的探究学习之路,由三角形的学习开启几何探索的大门!
内容简介:本书为《平面几何图形特性新析》的下篇,以专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。 本书内容适合初 、 高中学生 , 尤其是数学竞赛选手和初 、 高中数学教师 , 以及数学奥林匹克教练员使用 , 也可作为高等师范院校数学教育专业 , 以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书 。
本书系统阐述了同调理论的基本知识,自从庞加莱奠定了拓扑学的基础之后,同调理论就被认为是学习代数拓扑学的基本入门知识,因此,本书对于广大研究生学好同调理论并进而研究拓学都是一本极好的教材。 目次选择:(1)同调和上同调,计算的方法;(2)光滑函数的临界点和同调理论;(3)配边和光滑结构。
本书指出二维、三维的欧氏几何都存在对偶原理,欧氏几何经过对偶所产生的新几何,实质上是对欧氏几何的一种新解释,称为“黄几何”(欧氏几何自身改称为“红几何”),“黄几何”经过再对偶产生的新几何称为“蓝几何”,…… 对于任何一个命题(本书所说的命题均指真命题),都可以反复使用对偶原理,产生一个又一个新的命题,形成命题链,这些新命题的正确性毋庸置疑,盖由对偶原理保证,这是射影几何所不具备的。 建立欧氏几何的对偶原理,除了需要“假元素”(指无穷远点、无穷远直线、无穷远平面)外,还要引进“标准点”,它是度量(长度和角度)之必需,是建立对偶原理的点睛之笔,成败之举。 运用欧氏几何对偶原理解题,是一种新的解题方法,称之为“对偶法”。 本书可作为大专院校数学系师生、中学数学教师,以及数
本书以几何代数理论体系与自动定理证明思想为指导,系统深入地研究了几何代数的形式化理论与公理化体系,构建了一个兼具代数推理和几何解算能力的统一形式化数学定理体系,对代数与几何从概念上进行了融合与拓展、从描述方法和运算法则上进行了综合与归纳,为代数理论赋予了“形”的特征,为几何理论提供了“数”的内涵,并将其初步应用于实际物理问题的证明,内容涵盖了自动定理证明、机器人、形式化验证等人工智能领域。全书主要内容包括:几何代数理论的进展、形式化理论;HOL Light定理证明器体系;几何代数结构的形式化;几何与物理解释的形式化;单目相机姿态估计模型的形式化分析、对称陀螺运动的形式化分析等初步应用案例。作者长期对系统形式化与自动定理证明进行深入研究,并在机器人安全验证等领域持续实践迭代,本书是对该
本书指出二维、三维的欧氏几何都存在对偶原理,欧氏几何经过对偶所产生的新几何,实质上是对欧氏几何的一种新解释,称为“黄几何”(欧氏几何自身改称为“红几何”),“黄几何”经过再对偶产生的新几何称为“蓝几何”,…… 对于任何一个命题(本书所说的命题均指真命题),都可以反复使用对偶原理,产生一个又一个新的命题,形成命题链,这些新命题的正确性毋庸置疑,盖由对偶原理保证,这是射影几何所不具备的。 建立欧氏几何的对偶原理,除了需要“假元素”(指无穷远点、无穷远直线、无穷远平面)外,还要引进“标准点”,它是度量(长度和角度)之必需,是建立对偶原理的点睛之笔,成败之举。 运用欧氏几何对偶原理解题,是一种新的解题方法,称之为“对偶法”。 本书可作为大专院校数学系师生、中学数学教师,以及数
本书系统阐述了同调理论的基本知识,自从庞加莱奠定了拓扑学的基础之后,同调理论就被认为是学习代数拓扑学的基本入门知识,因此,本书对于广大研究生学好同调理论并进而研究拓学都是一本极好的教材。 目次选择:(1)同调和上同调,计算的方法;(2)光滑函数的临界点和同调理论;(3)配边和光滑结构。
本书以几何代数理论体系与自动定理证明思想为指导,系统深入地研究了几何代数的形式化理论与公理化体系,构建了一个兼具代数推理和几何解算能力的统一形式化数学定理体系,对代数与几何从概念上进行了融合与拓展、从描述方法和运算法则上进行了综合与归纳,为代数理论赋予了“形”的特征,为几何理论提供了“数”的内涵,并将其初步应用于实际物理问题的证明,内容涵盖了自动定理证明、机器人、形式化验证等人工智能领域。全书主要内容包括:几何代数理论的进展、形式化理论;HOL Light定理证明器体系;几何代数结构的形式化;几何与物理解释的形式化;单目相机姿态估计模型的形式化分析、对称陀螺运动的形式化分析等初步应用案例。作者长期对系统形式化与自动定理证明进行深入研究,并在机器人安全验证等领域持续实践迭代,本书是对该
本卷收录了吴文俊的《几何定理机器证明的基本原理》一书。书中论述初等几何机器证明的基本原理,证明了奠基于各种公理系统的各种初等几何,只需相当于乘法交换律的某一公理成立,大都可以机械化。因此在理论上,这些几何的定理证明可以借肋于计算机来实施。可以机械化的几何包括了多种有序或无序的常用几何、投影几何、非欧几何与圆几何等。 全书共分六章。前两章是关于几何机械化的预备知识,集中介绍了常用几何;后四章致力于几何的机械化问题。第3章为几何定理证明的机械化与Hilbert机械化定理,第4,5章分别为(常用)无序几何的机械化定理和(常用)有序几何的机械化定理,第6章阐述各种几何的机械化定理。 本书可供数学工作者和计算机科学工作者以及高等院校有关专业的师生参考。
本书系统阐述了同调理论的基本知识,自从庞加莱奠定了拓扑学的基础之后,同调理论就被认为是学习代数拓扑学的基本入门知识,因此,本书对于广大研究生学好同调理论并进而研究拓学都是一本极好的教材。 目次选择:(1)同调和上同调,计算的方法;(2)光滑函数的临界点和同调理论;(3)配边和光滑结构。
本书以几何代数理论体系与自动定理证明思想为指导,系统深入地研究了几何代数的形式化理论与公理化体系,构建了一个兼具代数推理和几何解算能力的统一形式化数学定理体系,对代数与几何从概念上进行了融合与拓展、从描述方法和运算法则上进行了综合与归纳,为代数理论赋予了“形”的特征,为几何理论提供了“数”的内涵,并将其初步应用于实际物理问题的证明,内容涵盖了自动定理证明、机器人、形式化验证等人工智能领域。全书主要内容包括:几何代数理论的进展、形式化理论;HOL Light定理证明器体系;几何代数结构的形式化;几何与物理解释的形式化;单目相机姿态估计模型的形式化分析、对称陀螺运动的形式化分析等初步应用案例。作者长期对系统形式化与自动定理证明进行深入研究,并在机器人安全验证等领域持续实践迭代,本书是对该
本书指出二维、三维的欧氏几何都存在对偶原理,欧氏几何经过对偶所产生的新几何,实质上是对欧氏几何的一种新解释,称为“黄几何”(欧氏几何自身改称为“红几何”),“黄几何”经过再对偶产生的新几何称为“蓝几何”,…… 对于任何一个命题(本书所说的命题均指真命题),都可以反复使用对偶原理,产生一个又一个新的命题,形成命题链,这些新命题的正确性毋庸置疑,盖由对偶原理保证,这是射影几何所不具备的。 建立欧氏几何的对偶原理,除了需要“假元素”(指无穷远点、无穷远直线、无穷远平面)外,还要引进“标准点”,它是度量(长度和角度)之必需,是建立对偶原理的点睛之笔,成败之举。 运用欧氏几何对偶原理解题,是一种新的解题方法,称之为“对偶法”。 本书可作为大专院校数学系师生、中学数学教
本书是一本民国时期中学生用的英文原版平面几何课本。 书中介绍了中学几何的知识及内容,同时配以相应的习题与解答,以供读者 好的理解。 本书适合中学师生及数学爱好者参考阅读。
本书是作者在点集拓扑方面几十年教学与研究的成果,内容丰富,层次分明。全书共3章,第1章介绍了拓扑空间与拓扑不变量,给出了相关的概念与定理,证明了重要的Urysohn引理、Tietze扩张定理与可度量化定理;第2章给出了各种构造新拓扑空间的方法,讨论了子拓扑空间的遗传性、有限拓扑积空间的有限可积性、拓扑积空间的可积性、商拓扑空间的可商性,并研究了映射空间Yx的点式收敛拓扑、一致收敛拓扑与紧致一开拓扑;第3章引入了拓扑空间的基本群的概念,给出了8种计算基本群的方法,特别论述了覆叠空间理论,它是基本群计算的强有力的工具,同时,由底空间的基本群的子群的共轭类给出了覆叠空间的分类定理,还在一定条件下证明了万有覆叠空间的存在、 性定理,进而,对正则覆叠空间证明了:自同构群A(E,B,p)与π1(B,bo)/p*(π1(E,e0))同构。 本书