云非圆球,山非圆锥,闪电不走直线.大自然形状的复杂性有不同的种类,不仅仅是程度上的不同.为了描写这些形状,伯努瓦?B.芒德布罗设计和发展了一种新的几何学??分形几何学.他的工作对本书论及的许多不同的领域都很重要.现在,这样的领域因许多积极的研究者而大为扩充,芒德布罗展示了分形几何学的根源及其新应用的深入概述.本书的以前几个版本受到高度评价,但这一版有更广泛和深入的覆盖范围,以及更多插图.
全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座教材及、省级骨干教师培训班参考使用。
多变量基本超几何级数,由于它的产生具有深刻的根系统的代数表示论背景,亦称伴随根系统基本超几何级数。本书是作者结合自己的长期研究,系统介绍多变量基本超几何级数研究领域的主要理论、方法及其应用的著作。全书共十二章,内容包括单变量基本超几何级数的基本理论及经典结果、多变量基本超几何级数的引入与分类、求和与变换公式、U(n+1)级数的基本定理及其应用、算子算子恒等式及其应用、多变量Bailey变换及其应用、多维矩阵反演、行列式计算方法及其应用、U(n+1)AAB Bailey格及其应用、多变量WP-Bailey对链及其应用、椭圆超几何级数初步、多重级数的收敛性等。本书尽可能多地容纳多变量基本超几何级数的众多繁杂的公式,尽量对读者起到查阅已有结果的手册作用。
本书是一本关于三维Euclid空间中光滑曲线与曲面一般几何理论的基础性专门学术著作。全书共9章,可划分为四个部分。第1章为第一部分,主要讲授三维矢量的代数与分析,是全书的理论基础。第2、3章为第二部分,属于三维Euclid空间的曲线论。第4~8章为第三部分,属于三维Euclid空间的曲面论。第9章为第四部分,深入详细地研究了包络现象。相对于既有文献,本书补充了新内容,对传统内容也往往采用新方法加以处理,对于同一问题有的还给出了不同的解法或证明,以例题的形式对工程中常见曲线、曲面的几何性质做了比较深入的定量研究讨论,还能够把其他数学分支的理论与方法自然地应用于经典微分几何的研究。本书思路清晰,推导过程详尽,论述深入浅出、直接明快,既不失作为数学著作的严谨与严格,又注意联系工程实际。
本书前3章主要介绍了Riemann流形、Riemann联络、Riemann截曲率、Ricci曲率和数量曲率,详细论述了全测地、全脐点和极小子流形等重要内容。此外,还应用变分和Jacobi场讨论了测地线、极小子流形的长度与体积的极小性。在证明了Hodge分解定理之后,论述了Laplace-Beltrami算子△的特征值估计以及谱理论。进而,介绍了Riemann几何中重要的Rauch比较定理、Hessian比较定理、Laplace比较定理和体积比较定理。作为比较定理的应用,我们有 的拓扑球面定理。这些内容可视作近代微分几何 的专业基础知识。在叙述时,我们同时采用了不变观点(映射观点、近代观点)、坐标观点(古典观点)和活动标架法。无疑,这些对阅读文献和增强研究能力会起很大作用。第4章、第5章是作者关于特征值的估计和等谱问题、曲率与拓扑不变量等方面部分论文的汇集,将引导读者如何去阅读文献,如
Credlts for Figures and Color Plates Much has changed in the world of fractals, computer graphics and modem mathematics since the first edition of Fractals Everywhere appeared. The company Iterated Systems, Inc., founded by Michael Barnsley and Alan Sloan, is now competing in the image compression field with both hardware and software products that use fractal geometry to compress images. Indeed, there is now a plethora of texts on subjects like fractals and chaos, and these terms are rapidly becoming "household words.
《航空基础技术丛书:航空材料技术》共分9章,从航空材料概论开始,分别介绍了高温结构材料技术、铝合金材料技术、钛合金材料技术、超高强度结构钢技术、透明材料与透明件制造技术、高温防护涂层材料技术、橡胶密封材料技术和先进航空材料检测技术等专业的基本情况及其发展。
本书是我社正在开发的《美国数学会经典影印系列》中的一本,美国数学会的出版物在国际数学界享有很高声誉,出版了很多影响广泛的数学书。 十三五 期间计划引进的该学会的图书系列涵盖了代数、几何、分析、方程、拓扑、概率、动力系统等所有主要数学分支以及新近发展的数学主题。 本书源于以解析几何和代数几何为主题的PCMI暑期学校的一系列讲座。该系列讲座旨在介绍解析几何和代数几何中*进展背后所运用的高级技巧。讲座包含了许多说明性的例子、详细的计算和对所提出的主题的新观点,以便增强非专业人士对这些材料的理解。