《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
本书展示如何用Python程序将不同格式的数据处理和分析任务规模化和自动化。主要内容包括:Python基础知识介绍、CSV文件和Excel文件读写、数据库的操作、示例程序演示、图表的创建,等等。
以地理科学为理论基础,以地理信息、遥感、导航卫星和物联网为技术支撑,以空间分析、空间统计和地理计算为基本方法的地理信息科学,在过去的几十年中飞速发展。 《地理信息科学前沿/地理信息科学系列》由地理信息科学领域的数十位华人专家共同撰写,对这一领域的前沿问题进行了全方位的审视和展望。内容包括对不同数据来源诸如新型遥感技术、定位和社交媒体数据的收集、表达、使用、分享以及理解、描述和不确定性评估;时空地理学和时空分析;高性能并行计算、云计算、CyberGIS等新的分析方法和经典的空间统计学方法;开源地理信息和开源空间分析软件;以及这些新的理论、技术、方法在生态安全、数字土壤制图、农业遥感、土地利用、医疗服务和环境健康研究中的应用。 《地理信息科学前沿/地理