数学是研究现实世界数量关系和空间形式的科学,是一种思维方式,在它的发展历史长河中,一直与各种应用问题紧密相关。 本书是为各类本专科院校开展数学建模活动和参加全国大学生数学建模竞赛的指导培训而编著的,是笔者在使用多年的指导培训讲义基础上结合的竞赛题修订而成的。内容包括:数学建模概述、初等数学建模方法示例、预测类数学模型、评价类数学模型、优化类数学模型、概率类数学模型、多元统计分析模型、方程类数学模型、图与网络模型以及如何准备全国大学生数学建模竞赛。同时它对以往在全国大学生数学建模竞赛以及其他数学建模竞赛中出现过的几类主要数学模型进行了归纳总结。
《离散与连续空间中的搜索理论》讨论离散和连续空间中关于静止和运动目标的搜索策略,分析了目标的概率分布函数已知和未知的各种情况,重点介绍了搜索理论的基础知识和发展。 《离散与连续空间中的搜索理论》共分6章。章介绍搜索理论的产生、发展过程及研究现状。第2章讨论针对静止目标的搜索策略及数学模型。第3章讨论分布函数未知情况下的搜索策略。第4章讨论针对运动目标的搜索策略,并尝试将搜索问题与控制理论结合起来进行讨论。第5章介绍系统的控制理论的一些基本原理以及与搜索理论的交叉点。第6章给出了搜索理论在经济学和无线网络管理领域的一些应用。最后对全书做了一个总结并给出关于进一步研究的一些建议。《离散与连续空间中的搜索理论》包括了许多实例和算法,以及一个示范性的仿真软件包
《马尔可夫决策过程理论与应用》从马氏决策的一般理论出发,介绍了马氏决策的基本概念,给出了决策过程的表述方法并介绍了不同准则条件下的基本理论,还给出了作者对一些实际问题的研究心得,为读者提供参考. 《马尔可夫决策过程理论与应用》在《实用马尔可夫决策过程》一书的基础上增加了 Bandit 过程、部分可观察过程、软件可靠性建模分析以及大规模计算方法等章节,为读者提供更为宽阔的视野.