本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数学建模竞赛的指导用书。
计算机代数是研究符号计算的算法设计、理论分析和计算机实现的学科。本书介绍计算机代数的基本知识、算法及其理论依据。主要内容包括数据的表示与基本运算、结式与子结式、整系数多项式的模算法、特征列方法、Grobner基方法、实系数多项式的根、实闭域上的量词消去以及形式积分等。本书侧重陈述经典方法,并采用通俗的语言解说算法的数学理论。
本书在不损数学本身的严密性和精确性的前提下,打破了经济学和数学分别教学的常规,将经济学与数学有机结合在一起,不但清晰地表达了相关的数学主题,而且比较完美地将这些主题与经济问题相结合,其侧重点在于教会学生利用数学知识解决相关的经济问题。本书第二版也由我社出版,共发行6000册。
无
脑科学研究是全世界科学研究的热点,其中癫痫是我国乃至全球人口健康领域正在面临的重大挑战。由于发作种类繁多、诱因复杂、生理机制至今尚不明确,即便现在有发展前景的神经调控治疗也无法彻底治愈。因此人们对癫痫的认识还需要医学、神经科学、生物学、数学、力学等学科的交叉研究和共同参与。 作者与国内外著名医学院、国际一流癫痫神经外科医生合作,基于真实的临床医学数据或者电生理实验现象以及医学相关报道,借鉴、修正、构建符合生理特性的癫痫功能网络模型,采用动力学与控制分析手段,从分子细胞水平或者系统回路水平解释癫痫的发病原理从而指导临床干预,辅助实现从 对病治疗 提升为 对症治疗 。
《动力系统反控制方法及其应用》详细论述了离散时间系统、连续时间系统和切换系统反控制(即混沌化)的研究方法与应用及其电路设计与实现,共20章。~9章主要介绍离散时间系统反控制,包括数学预备知识与混沌的基本概念,离散时间系统反控制的Chen-Lai算法及其电路实现,离散时间系统反控制的Wang-Chen算法,单峰和多峰映射,离散正弦多峰映射,线性取模运算多峰映射,混沌控制与同步,离散时间系统的单变量反控制、同步及其在混沌序列密码中的应用,高维广义超混沌猫映射及其在分组图像加密中的应用等。0~19章主要介绍连续时间系统与切换系统的反控制,包括连续时间系统与切换系统反控制方法概述,连续时间线性系统的反控制,连续时间非线性系统的反控制,三维切换系统的反控制,四维切换系统的反控制,具有指标1鞍焦平衡点和相同特征平面的