本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
《数值方法》系统讲解数值方法,作者在第1版的基础上进行了较多修改。主要内容包括误差的概念、非线性方程求根方法、线性方程组求解、矩阵的特征值与特征向量的计算、插值、曲线拟合与函数逼近、数值积分方法、常微分方程求解、偏微分方程求解等。书中包含丰富的实例和练习,并且介绍了如何应用MATLAB软件完成相关的求解工作。
AnearlyexperimentthatconceivesthebasicideaofMonteCarlopu-tatiosisknownas"Buffon'needle",firststatedbyGeorgesLouisLeclercComtedeBuffonin1777.Inthiswell-knownexperiment,onthrowsaneedleoflengthlontoaflatsurfacewithagridofparallellineswithspacing.Itiseasytoputethat,underidealconditions,thechancethattheneedlewillintersectoneofthelinesin.Thus,ifweleppNbetheProportionof"intersects"inNthrows,wecanhaveanestimateofπaswjocjwill"converge"toπasNincreasestoinfinity.
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
《现代数学基础丛书·典藏版:发展方程数值计算方法》介绍了求发展方程数值解的原理和计算方法,包括将发展方程定解问题离散化的途径、方法,计算格式的设计和求解算法,以及关于数值方法的理论分析.《现代数学基础丛书·典藏版:发展方程数值计算方法》内容既保留了那些行之有效的传统方法和经典理论结果,更注重于介绍近几十年来兴起的新方法和传统方法的新发展,反映近几十年来发展方程数值方法的研究与应用方面取得的新进展、新成果.此外,书中列举了若干实际应用问题(多属非线性与耦合问题)。《现代数学基础丛书·典藏版:发展方程数值计算方法》可供计算数学、应用数学、力学等专业的研究生、教师以及从事科学与工程计算应用与研究工作的科技人员参考。