《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书最具价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
支持向量机的研究是近十余年机器学习、模式识别和数据挖掘领域中的研究热点,受到了计算数学、统计、计算机、自动化和电信等有关学科研究者的广泛关注,取得了丰硕的理论成果,并被广泛地应用于文本分类、图像处理、语音识别、时间序列预测和函数估计等领域,本书首先介绍了核函数的概念;然后从几何直观的角度介绍了建立二分类模型和回归模型过程中所取得的理论成果;*后对于分解算法、*小二乘支持向量机、多分类、模糊支持向量机、在线学习和大规模分类相关的优秀成果进行了归纳和整理,从数学上对相关算法的原理进行了详细分析。本书的内容既包括支持向量机的**进展,也包括作者的多年研究成果。作者希望本书能够有助于对机器学习、模式识别和数据挖掘感兴趣的读者更加快速地了解支持向量机的**研究动态,能够有助于读者理清算法的本
无
本书讨论处理无约束**化问题的数值方法,主要包括Newton法。共轭梯度法、拟Newton法、Powell直接方法以及非线性小二乘法,并且阐明了其理论、应用和发展动向。
无
本书系统地论述了约束**化中常用的计算方法和新算法,以及这些方法的计算框图和在计算机上实现的计算方案。主要内容包括:二次规划算法、直接法、系列无约束**化方法、容许方向法、简约梯度法、约束变尺度法等。本书取材着眼于方法的实用性和全面性。
本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
随着科学计算水平的不断提高,数值模拟成为自然科学领域的关键技术手段。对于流体领域的研究者,动力学数值模拟是描述流体运动客观现象及规律的重要工具,也是深刻理解流体及其伴生要素输移运动基本理论的重要途径。随着数值模拟的重要性日益显著,数值模拟的核心问题即数学模型的可靠度和准确性也备受关注,如何度量科学计算的综合性能,如何确认和验证模型的计算结果,是流体数值模拟领域进行行业标准化应用和推广亟待解决的重要科学问题。 目前,靠前同业对科学计算确认与验证评价传统模式主要是通过实测资料对模型进行验证以及主观因素为知名品牌的专家评审,针对河流动力模型数值解的可靠性、准确性分析及结果可信度研究甚少。纵观河流数值模拟领域,仍缺乏一套科学规范的可度量评价体系,导致模型性能难以合理的确认和验证,模型
今年是恩师郭柏灵院士70寿辰,华南理X-大学出版社决定出版《郭柏灵论文集》。郭老师的弟子,也就是我的师兄弟,推举我为文集作序。这使我深感荣幸。我于1985年考入北京应用物理与计算数学研究所,师从郭柏灵院士和周毓麟院士。研究生毕业后我留在研究所工作,继续跟随郭老师学习和研究偏微分方程理论。老师严谨的治学作风和对后学的精心培养与殷切期望,给我留下了深刻的印象,同时老师在科研上的刻苦精神也一直深深地印在我的脑海中。 郭老师1936年生于福建省龙岩市新罗区龙门镇,1953年从福建省龙岩市中学考入复旦大学数学系,毕业后留校工作。1963年,郭老师服从祖国的需要,从复旦大学调入北京应用物理与计算数学研究所,从事核武器研制中有关的数学、流体力学问题及其数值方法研究和数值计算工作。他全力以赴地做好了这项工作,为我国
本书重点介绍微积分、线性代数和微分方程等课程常用的数值计算的基本方法、算法设计、理论分析和实现技巧。内容包括函数插值、数据拟合、数值积分、数值微分、矩阵特征值计算、线性方程组的各种解法、非线性方程(组)的迭代方法和微分方程数值解法等,同时各章均配有适量的例题和习题。全书兼顾理论分析的同时,重视方法的实现,所描述的算法可操作性强,适合理工科研究生、大学高年级本科生使用,也可供科技工作者和工程技术人员参考使用。
本书收集了400多道国内外数学值试题,它将抽象的定理,公式,方法隐含于通俗,生动,有趣的题目中,深入浅出,本书适用于中学生、数学竞赛选手及数学爱好者。
本书对近年来认知计算和多目标优化领域常见的理论及技术进行了较为全面的阐述和总结,并结合作者多年的研究成果,对相关理论及技术在应用领域的实践情况进行了展示和报告。全书从认知计算和多目标优化两个方面展开,主要内容包含以下几个方面:认知科学及其特点,多目标优化问题及其求解方法,高效免疫多目标SAR图像自动分割算法,基于智能计算的认知无线网络频谱分配与频谱决策方法。
Navier-Stokes方程是流体的经典方程。在本书中,我们将从线性的Stokes问题入手,研究如何利用协调有限元方法、有限体积方法以及非协调有限元方法高效求解。然后在强**解情况和非奇异解束两个层面研究定常Navier-Stokes方程理论和高效计算方法,同时介绍求解定常Navier-Stokes方程的三种迭代方法和针对较大雷诺数问题的Euler时空迭代方法。后研究了非定常Navier-Stokes方程的有限元离散方法以及高效全离散方法。
本书力图将数值分析的基本知识与Matlab软件有机地结合,强调数值分析的基本方法与相关算法的Matlab实现。介绍如何应用Matlab提供的数值分析有关的函数来实现数值分析中的各种方法,强调数值方法的应用,目的是使读者在学习数值分析的方法之后,能够应用数学软件来解决实际问题。 本书分三个层次,个层次是数值分析的基本方法,与相应算法的Matlab实现;第二个层次是对数值分析中的一些问题作深入讨论,是数值分析内容的扩展;第三个层次是介绍与数值分析有关的Matlab函数,以案例的形式来分析问题,讨论如何运用数值分析的知识以及相关的Matlab函数解决实际问题。 本书可作为“数值分析”实习或实验课的教材或教学参考书,可作为“数值分析”课程和教学实验课的辅助教材,也可供科技工作者和工程技术人员学习与参考。本书对如何运用Matlab函数解
本书涵盖了数学建模初步、差分方程、插值与数值积分、常微分方程、线性代数方程组、非线性方程与方程组、无约束优化、约束优化、整数规划、数据统计分析、统计推断、回归分析等基本而重要的建模门类。各章的前部,是数学软件MATLAB/LINDO/LINGO的常用基本命令的演示,后部则是一些典型的建模案例,每个实验又区分难易,较简单的实验,以程序为单一主体;较复杂的,则设置模型问题、建模求解、程序设计、结果说明等段落,清晰演示一个数学模型从问题提出、模型假设到建模求解、编程实现的全过程,使得学生对基本命令有例可查,对典型方法有法可依。本书适合大学理工、人文、经管、医学、农学等各院系各专业的师生阅读和练习,只需具备若干基本的微积分、线性代数、概率统计、很优化的常识,以及推荐的安装有MATLAB/LINDO/LINGO等数学
The use of the preconditioned conjugate gradient method with circulant preconditioners to solve Toeplitz systems was proposed in 1986. In this short book,the author mainly studies some well-known preconditioners from a theoretical viewpoint. An application of preconditioners to systems of ordinary differential equations is also discussed. The book contains several important research results on iterative Toeplitz solvers obtained in recent years. It could be accessible to senior undergraduate students who, in various scientific computing disciplines, have a basic linear algebra, calculus, numerical analysis, and computing knowledge.The book is also useful to researchers and computational' practitioners who are interested in fast iterative Toeplitz solvers. Dr. Xiao-Qing Jin is a Professor at the Department of Mathematics, University of Macau. He is the author of 4 books and over 70 research papers. He is also a member of the editorial beards of Journal on Numerical Methods and Computer Applications, Numeri
《轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法。在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。《轨迹》可供中学数学教师参考,也可供中学生课外阅读。
本书介绍了科学计算中基本的数值计算方法。主要内容有:线性代数方程组的数值解法,非线性方程和方程组的迭代解法,矩阵特征值和特征向量的计算,函数的插值与曲线拟合,数值积分和常微分方程初值问题的数值解法。 本书可作高校理工科有关专业的教材,也可供有关科技人员参考。