遗传学学科的起源应归功于孟德尔遗传规律的发现以及土9世纪后半期BaranetSky提出的染色体的概念。遗传学学科的真正构成是在20世纪初期形成的。而关于基因确切的化学属性知识及其表达机制方面的突破,是在于1953年WatSon和Crick发现的DNA双螺旋结构,这一结构可以解释基因的所有属性。这之后的一系列发明和创造,导致遗传语言的确立。解释基因的核酸语言翻译成为蛋白质的氨基酸语言的机制的密码概念是一个重大的发展。一旦基因和遗传密码的属性得到认识,技术上的惊人发展将会导致这样的事实,基因可以被分离、合成、分析,并且可以被改造,被从一种有机体直接转移到另一种有机体上。这种培育转基因作物的新技术,结合传统的作物改良方法,如通过突变、染色体变异和杂交等所产生的影响,简直难以估量。 同时,作为遗传物质或基因的载体,需要
作为有关细胞信号传递过程的一本书,《信号转导》(原著第二版)详细介绍了确立近代和当前科学发现的起源、关键观察和实验。作者从历史概况谈起,讲述了化学信使的概念如何在20世纪初期产生并逐渐形成目前对、细胞因子、神经递质和生长因子作用的理解。之后,进一步介绍了由经典受体(如黏附分子)产生的复杂信号级联反应,这些信号参加了视觉、嗅觉、炎症、先天免疫和适应性免疫、葡萄糖稳态调控、细胞命运决定、细胞分化和细胞转化等过程。最后,讨论了针对性地干预转导通路来治疗癌症和组装信号复合体的蛋白结构域。 本书是一本非常有价值的参考书,适合生物化学与分子生物学、细胞生物学等相关专业的高年级本科生、研究生阅读,也可作为高校相关专业教师的教学和科研参考书,亦可供生物医学、药理学、免疫学及相关领域的研究人员参考
细胞是生物结构与功能的基本单位,一切生命现象都要从细胞中寻找到答案,因此,细胞生物学是研究细胞的结构与功能以阐明其生命活动规律的的科学。本书将介绍细胞的组成结构、细胞器以及细胞生命活动的基本规律。按照由结构到功能以及生命活动过程中相互间联系的程度与顺序依次介绍,包含细胞膜、细胞连接与胞外基质、细胞内膜系统。线粒体与叶绿体、细胞骨架、细胞核与染色体、细胞信号转导、细胞增殖调控、细胞衰老与细胞死亡、细胞分化等。
1995年以来,通过*、卫生部及北京市等各级教育教学改革项目的研究与实践,我校着力于人才培养模式和课程体系的研究,实现融知识、能力、素质于一体的综合培养,拓宽专业口径,特别强调理论与实践的结合,培养学生自学和创新的精神和能力,树立终身学习的观念;进行了课程内容、教学方法和考核方法的研究和实践,改革教与学的方法,以学生为主体,以教师为主导,引导学生主动学习,注意因材施教,注重加强人文紊质的培养,强调在教学过程中的教书育人。 在改革实践中我们深刻认识到教材建设在教学过程中起着重要的作用。但长期以来医学教育一套教材一统天下的局面,未能充分体现各医学院校的办学特点,未能及时反映教学改革及教学内容的更新。为此我们邀请了北医及部分兄弟院校各学科的专家教授编写了这套长学制教材。 这套教
本书共38章,详细介绍了以细胞周期素、细胞周期素依赖性蛋白激酶为核心的细胞周期调节分子的基因结构、表达和调控机制、生物学功能、调控网络、细胞外信号刺激识别、细胞内信号转导,以及上述活动与正常生理过程、疾病状态之间的相互关系等内容。 本书内容翔实、资料新颖,适合从事医学和生物学研究的科研工作者、研究生、本科生等参考使用。
本书系统介绍了力致骨结构重建过程中骨组织细胞的功能、细胞的力学环境,以及细胞/分子水平的力学-生物学耦合规律。书中通过具体的研究实例展示了骨组织细胞如何通过膜上分子、离子通道、胞内骨架来感受其周围力学环境的变化;进而如何将这些力学刺激信号传递到细胞内部,并传递到细胞核内以影响基因的表达,最后控制细胞的生物学性质;以及在成骨过程和破骨过程的不同阶段,力学刺激下细胞的生物学响应规律有何特点。书中还简单介绍了骨组织细胞力学研究中常用的一些实验技术和方法。