本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书是高等学校文科(包括经管类)各专业的数学教材,分上、下两册。上册含一元函数的微积分和线性代数部分,内容包括初等函数、极限与连续、变化率与导数、积分、线性代数初步、矩阵与线性方程组、矩阵的特征值与特征向量、二次型。下册含多元函数的微积分、常微分方程和概率统计部分,内容包括多元函数的微分、二重积分、无穷级数、常微分方程、随机事件的概率、随机变量及其概率分布、数理统计初步。各章均配有适当、适量的习题供读者学习巩固。
《高等代数习题解(上)(修订版)》从多项式、行列式、线性议程组、矩阵等方面,精选了618道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都对本节主要定义、定理和理要结论作了简要的概述。内容丰富,重点突出,解答明确,尤其便于自学。可供高等院校师生、中学教师和广大数学爱好者以及有志报考研究生的人员学习参考。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
《高等数学同步辅导》与同济大学应用数学系编写的《高等数学》(本科少学时类型)教材相配套,分上、下两册,共十一章,包括函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分及其应用、微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、无穷级数等内容。每一章由内容摘要、典型例题与同步练习、练习题(题后附有参考答案)三部分组成。本书主要阐述了《高等数学》的基本理论和基本方法,剖析了《高等数学》的重点和难点。本书由周晖杰等主编。
本书是根据普通高等医药院校数学教学要求编写而成的数学基础课程教材,本书共分6章,分别阐述了函数、极限与连续;导数与微分;导数的应用;不定积分;定积分及其应用;常微分方程等医药学研究巾所涉及的数学基础知识.以基本概念、基本理论与数学方法为重点,结合医药实例对各章内容进行详细讲解,并配有适当的习题,本书在每章内容结束之后,均配有相应的数学历史知识与著名数学家生平以提高学生对数学的学习兴趣。
本书是为学习高等数学的读者编写的,按国内通常高等数学教材知识点布局,分为十二章,每章设若干节、知识脉络图和按章模拟考题.各节均设诸栏目,对高等数学的主要知识点进行归纳,释疑解惑,剖析典型例题,揭示解题方法与技巧,并配制两级测试题及答案与提示,供学生自测.
本书是国家工科数学教学基地之一的哈尔滨工业大学数学系,根据数学教学改革成果而编写的系列教材之一。全书共九章,内容包括:随机事件与概率,条件概率与独立性,随机变量及其分布,多维随机变量及其分布,随机变量的数字特征与极限定理,数理统计的基本概念,参数估计,假设检验,单因素试验的方差分析及一元正态线性回归。每章后的习题及书末的补充题收录了较多的应用题及历年工学、经济学硕士研究生的入学考试题。
本书共分三卷。 上卷共分五编,分别为 编近世几何学初编,第二编几何作图题解法及其原理,第三编初等几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形。 本书适合大学生、中学生及平面几何爱好者。 中卷共分四章,分别为 章圆周的答分和正多边形,第二章线的连接,第三章比例,斜率和锥度,第四章曲线。 本书适合大学生、中学生及平面几何爱好者研读。 下卷共分六编,分别为: 编D·希尔伯特论平面几何作图问题,第二编F·克莱茵论平面几何作图问题,第三编И·И·亚历山大洛夫论平面几何作图问题,第四编Л·И·别列标尔金论平面几何作图问题,第五编考斯托夫斯基论尺规作图,第六编平面几何作图问题散论,及附录。 本书适合大学生、中学生及平面几何爱好者。
本教材适用于各理工学科中非数学专业的高等数学课程.由于高等数学基本理论、基本方法和基本技能,特别是微积分的基本理论和方法在各理工类等学科中具有广泛的应用,所以本教材进一步完善了微积分方面的基本理论和方法.同时,因傅里叶级数在理工类学科中具有广泛的应用背景,所以本教材把傅里叶级数单独作为一章,其目的是强调傅里叶级数的重要性.本教材的特点是每一章节都列举了大量的例子,题型多样化,除了有利于学生掌握知识外,还有利于学生思维能力的培养;每一节附有习题,每一章附有总复习题.《BR》本教材共十二章,分上、下两册.上册内容:函数的极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,向量代数与空间解析几何;下册内容:多元函数微分法及其应用,重积分及其应用,曲线积分与曲面积分,
本书的特色是将各章内容的知识体系结构以图解的形式展现,使读者从整体上更清晰地了解各章内容及它们之间的联系,突出各章内容的重点和难点。把各章内容的主要知识点总结、汇集起来,形成内容概要。通过丰富的例题分析,建立完善的解题方法和技巧体系,并提供大量的复习思考题,巩固、提高读者的解题技能。
《高等数学竞赛题解析教程(2014本科适用)》(作者陈仲)根据江苏省普通高等学校非理科专业高等数学竞赛委员会制订的高等数学竞赛大纲并参照*制订的考研数学考试大纲编写而成,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含“基本概念与内容提要”、“竞赛题与精选题解析”与“练习题”三个部分。其中,竞赛题选自江苏省(1-11届)、北京市(1-15届)、浙江省(1-10届)、广东省、陕西省、上海市、天津市等省市大学生高等数学竞赛试题;清华大学、南京大学、上海交通大学等高校大学数学竞赛试题;莫斯科大学等国外高校大学生数学竞赛试题。 高等数学竞赛能激发大学生们学习高等数学的兴趣,活跃思维。高等数学竞赛试题中既含基本题,又含很多具有
全书分4章,包括微积分、*数学、代数与几何、无穷的比较等。书中根据文科的特点,以专题形式写作,突出对数学基本思想的理解,强调学生的数学思维训练,淡化形式计算,有利于提高文科学生数学知识水平,了解数学的思想方法在人类思想史中的地位,体会数学在人类文明进步中的作用。
本书是为普通高等教育“十三五”规划教材、普通高等院校创新思维训练教材和普通高等院校少数民族预科教材《高等数学基础》编写的教材配套辅导书. 按照教材的章节, 给出了每章的基本要求、知识框架、典型例题、课后习题全解、拓展训练和自测题. 本书旨在帮助学生熟悉教材, 提高解题能力, 形成创新思维, 为今后的学习和工作奠定坚实的数学基础.
本书根据“农林院校大学数学——微积分教学基本要求”,结合作者多年教学经验,根据农科专业的特点,按照继承、发展与改革的精神编写而成,是集体智慧的结晶。本书共分9章,包括函数、极限与连续;导数与微分;小值定理与导数的应用;不定积分;定积分及其应用;多元函数微分学;二重积分;无穷级数;微分方程与差分方程。本书的特点是:突出应用背景,侧重微积分在农林科技中的应用,并从实际例子出发,引出微积分的一些基本概念、基本理论和方法;内容由简到难逐步展开,结构严谨,例题丰富,通俗易懂,难点分散;注重数学思想与数学文化的渗透。本书的编写参考了近年来全国硕士研究生入学统一考试数学考试大纲,内容上有所兼顾。本书可供农林类高等院校农科专业学生使用,并可作为相关专业师生的教学参考书。
KdV方程及其高阶方程是一类 重要的浅水波方程,这类方程具有广泛的物理与应用背景。本书介绍了这类方程的物理背景,并给出相应的孤立子解、怪波解。本书着重研究几种重要类型的高阶KdV方程组在能量空间中的一些经典结果,其中包括适定性、长时间渐近性和稳定性结果。利用调和分析的现代理论和方法,本书详细介绍了这类方程初值及初边值问题的低正则性结果。基于可积系统的Riemann-Hilbert方法,本书同时研究了可积的Hirota方程及五阶mKdV方程解的长时间渐近行为,给出了方程解渐近主项的 数学表达式。 本书适合高等院校数学、物理专业的研究生、教师以及科研院所相关领域的科研工作人员阅读。
本书为科学出版社出版的《高等数学》(马少军、张好治、李福乐主编)的配套辅导,是编者多年教学经验的总结.本书每章内容包括基本内容、基本要求、习题解答.其中,基本内容列出了各章的基本理论知识和常用的计算公式;基本要求指出了各章每一部分内容应该掌握到什么程度,便于读者在复习时能合理分配力量;习题解答对《高等数学》的每一节课后习题以及各章的自测题都做了全面详细的解答.另外,书后还为考研的学生准备了六套综合测试题,并做了解答,便于学生了解考研题型和难度.本书内容丰富,解答明确,启发性强,通过认真学习,既能巩固所学的理论知识,又能有效地提高运算能力和技巧,还可提高读者分析问题和解决问题的能力.
《高等数学竞赛试题解析(2013)(高职高专适用)》内容含两篇,上篇介绍高等数学竞赛(高职高专)的基本内容与重要方法,下篇为高等数学竞赛(高职高专)试题解析,竞赛试题包含江苏省普通高校(1-11届)高等数学竞赛专科类试题、北京市大学生(5-14届)高等数学竞赛大专组试题、浙江省大学生(20032011年)高等数学(微积分)竞赛大专类试题、上海市大学生(1991年)高等数学竞赛专科组试题。 高等数学竞赛能激励高职高专的大学生学习高等数学的兴趣,活跃思想,高等数学竞赛试题中既含基本题,又含很多具有较高水平和较大难度的趣味题.这些题目构思绝妙,方法灵活,技巧性强,《高等数学竞赛试题解析(2013)(高职高专适用)》下篇将上列31份竞赛原题逐条解析,对重要题目深入分析,总结解题方法与技巧。 《高等数学竞赛试题解析
本书共十六章,书中全面论述了复分析的基本理论和许多论题,如黎曼映射定理、γ函数、解析开拓。本书前半部分内容适用于数学系本科生复分析一学期课程。后半部分适用于研究生专题课程。与第2版相比,本版内容做了较大改动,页数增加了120页。
《病理学与病理生理学》是“全国高等卫生职业院校课程改革规划教材”之一。其涵盖病理学与病理生理学的内容,揭示疾病发生、发展、转归的规律和机制,将病理学和病理生理学内容根据知识的衔接性进行有机整合。《病理学与病理生理学》共分十七章,包括总论和各论两部分,总论为**~十一章,主要讲述各种疾病的共同规律;各论为第十二~十七章,讲述不同系统常见疾病的特殊规律。为便于学生的学习,《病理学与病理生理学》相关章节列有案例、考点、链接和目标检测。