《高等数学同步辅导》与同济大学应用数学系编写的《高等数学》(本科少学时类型)教材相配套,分上、下两册,共十一章,包括函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分及其应用、微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、无穷级数等内容。每一章由内容摘要、典型例题与同步练习、练习题(题后附有参考答案)三部分组成。本书主要阐述了《高等数学》的基本理论和基本方法,剖析了《高等数学》的重点和难点。本书由周晖杰等主编。
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
《线性代数附册 学习辅导与习题全解 同济·第七版》是与同济大学数学科学学院编《工程数学线性代数》第七版教材配套的学习辅导书,由同济大学作者团队根据教材内容和教学要求编写而成。该书在《工程数学线性代数》第六版附册(即辅导书)的基础上修改而成。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)、自测资源等多个栏目。其中“释疑解难”根据编者对课程内容的深刻理解和长期积累的丰富经验进行编写;“例题剖析与增补”充分挖掘例题的内涵,有助于读者举一反三,掌握学习方法;“习题解答”注重阐明解题的思想和方法,对全书习题给出规范解答。 《线性代数附册 学习辅导与习题全解 同济·第七版》具有相对的完整性和独立性,主要面向使用同济
本书是根据普通高等医药院校数学教学要求编写而成的数学基础课程教材,本书共分6章,分别阐述了函数、极限与连续;导数与微分;导数的应用;不定积分;定积分及其应用;常微分方程等医药学研究巾所涉及的数学基础知识.以基本概念、基本理论与数学方法为重点,结合医药实例对各章内容进行详细讲解,并配有适当的习题,本书在每章内容结束之后,均配有相应的数学历史知识与著名数学家生平以提高学生对数学的学习兴趣。
《医学高等数学(第2版)》根据我国近年高等医药院校对高等数学教学的需求,按照*非数学专业数学基础课程教学指导委员会制定的“医科数学教学基本要求”编写。 《医学高等数学(第2版)》讲述了微分学、积分学、常微分方程、概率论及线性代数方面的基础知识,重点突出了基本概念、基本理论和基本微积分学计算方法。 《医学高等数学(第2版)》再版从生活中的具体问题入手,给出了一定数量的例题和习题,并用微积分的方法处理医学的实际问题。
《高等数学引论2(英文版)Introduction to Advanced Mathematics(2)》 是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授。全书包含了微积分、高等代数、常微分方程、复变函数论等内容。全书反映了作者的 数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲 的教学思想,还包括了作者的 要埋有伏笔 、 生书熟讲,熟书生温 等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 《高等数学引论2(英文版)Introduction to Advanced Mathematics(2)》 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容、多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第二册主要介绍复变函数论的
《高等数学(下册)(第二版)》为普通高等教育“十二五”规划教材。全书分上、下两册。本书为下册,共分5章,主要内容包括空间解析几何与向量代数、多元函数微分、多元函数积分、无穷级数、常微分方程等。此外,每节配有适量习题,有利于巩固所学知识;每章的自测题及书末的试题,可供学生自己检查学习效果;书末附习题参考答案,以供参考。本书在内容安排上循序渐进、由浅入深、通俗易懂。
《高等代数习题解(上)(修订版)》从多项式、行列式、线性议程组、矩阵等方面,精选了618道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都对本节主要定义、定理和理要结论作了简要的概述。内容丰富,重点突出,解答明确,尤其便于自学。可供高等院校师生、中学教师和广大数学爱好者以及有志报考研究生的人员学习参考。
由余达锦所著的《高等数学(下)》是根据*高等学校数学与统计学教学指导委员会制定的“工科类本科数学基础课程教学基本要求”和“经济管理类本科数学基础课程教学基本要求”,为适应高校高等数学教育改革,充分吸收现有国内外优秀教材的精华,结合编者多年教学实践经验编写而成的。 通过本课程的学习,使学生掌握微积分学、空间解析几何与向量代数、微分方程及无穷级数的有关基本理论和方法,培养学生具有一定的抽象思维、逻辑推理、空间想象能力和自主学习能力,具有比较熟练的分析能力和运算能力,并能用数学方法解决实际问题,为后续课程奠定必要的数学基础。 本书分为上、下两册。下册主要介绍微分方程与差分方程、空间解析几何与向量代数、多元函数微分学、重积分、曲线积分和曲面积分、无穷级数等6章内容。部分带“?”的
本书是按*"十二五"普通高等教育本科*规划教材《医学高等数学》第三版编写的配套辅导教材。全书共分8章,内容有函数、极限与连续,一元和多元函数微积分学,常微分方程,概率论基础,线性代数初步;每章由教学基本要求和知识要点、重点内容与侧重例题分析、解答题全解、客观模拟试题与答案或提示、章节模拟试题及试题答案或提示五部分组成,书末附一套医科高等数学考试模拟试题。本书引导学生系统归纳总结基础知识,抓住主要内容,力求短时间内使学生顺利通过考试;同时提高学生分析和解决问题的能力。
本书主要包括 椭圆积分和算术几何平均迭代次数、算术几何平均迭代、雅可比三重积及其一些数论应用、高阶转换、模方程和代数近似值、代数函数的复杂性、初等函数的算法、一般方法及迭代、平方和的应用、经典近似、简化复杂性方法等内容。其具体内容如下:第一章, 椭圆积分与算术几何平均迭代;第2章,算术几何平均迭代;第3章,雅克比三重积及其一些数值理论应用;第4章,高阶转换;第5章,模方程和代数近似;第6章,代数函数的复杂性;第7章,初等函数的算法;第8章,常规方法与迭代;第9章,一些其他应用; 0章,处理初等函数的其他方法。本书适合于参加数学竞赛的选手以及数学爱好者参考使用。
本书是根据*全国高等职业教育《应用数学基础》基本要求和当前高职高专数学教学实际,并结合多年教学实践而编写的,本书的特点是简明扼要、深入浅出、便于学生学习;重视应用,联系实际;习题分为A( 基础题)、B(提高题)、C(应用题、探究题),便于分层教学。内容包括线性代数初步、线性规划、概率、应用统计。 本书系高职高专精品课程规划教材高等数学系列教材之一,本系列教材包括《高等数学(基础分册)》、《高等数学(工程分册)》、《高等数学( 经管分册)》、《数学建模》等四本。 本书可作为两年制或三年制高职高专各专业高等数学课程教材。
本教材适用于各理工学科中非数学专业的高等数学课程.由于高等数学基本理论、基本方法和基本技能,特别是微积分的基本理论和方法在各理工类等学科中具有广泛的应用,所以本教材进一步完善了微积分方面的基本理论和方法.同时,因傅里叶级数在理工类学科中具有广泛的应用背景,所以本教材把傅里叶级数单独作为一章,其目的是强调傅里叶级数的重要性.本教材的特点是每一章节都列举了大量的例题,题型多样化,除了有利于学生掌握知识外,还有利于学生思维能力的培养;每一节附有习题,每一章附有总复习题.
本书是国家工科数学教学基地之一的哈尔滨工业大学数学系,根据数学教学改革成果而编写的系列教材之一。全书共九章,内容包括:随机事件与概率,条件概率与独立性,随机变量及其分布,多维随机变量及其分布,随机变量的数字特征与极限定理,数理统计的基本概念,参数估计,假设检验,单因素试验的方差分析及一元正态线性回归。每章后的习题及书末的补充题收录了较多的应用题及历年工学、经济学硕士研究生的入学考试题。
全书分上、下册,上册的主要内容为一元微积分,下册的主要内容为空间解析几何、多元函数微积分、线性代数、概率与统计等。全书每一部分内容均以概念导入起,从直观问题到抽象数学知识,题材丰富有趣,反映社会对数学的需求;表达浅近易懂、深入浅出。内容注重正本清源,刻画数学本质,至简至易;强调学生通过动手尝试进行数学研究,获得数学创造体验,训练思维能力。修订版新增数学应用内容,介绍用数学建模解决实际问题的全过程;新增 问题与思考 探究与发现 栏目,强调思想与方法学习;更强调与小学数学的联系,沟通大学数学学习与小学数学教学之间的联系,突出学以致用。本书可供高等院校小学教育专业作为教材使用,也可供其他专业学生选用或参考。
本教材适用于各理工学科中非数学专业的高等数学课程.由于高等数学基本理论、基本方法和基本技能,特别是微积分的基本理论和方法在各理工类等学科中具有广泛的应用,所以本教材进一步完善了微积分方面的基本理论和方法.同时,因傅里叶级数在理工类学科中具有广泛的应用背景,所以本教材把傅里叶级数单独作为一章,其目的是强调傅里叶级数的重要性.本教材的特点是每一章节都列举了大量的例子,题型多样化,除了有利于学生掌握知识外,还有利于学生思维能力的培养;每一节附有习题,每一章附有总复习题.《BR》本教材共十二章,分上、下两册.上册内容:函数的极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,向量代数与空间解析几何;下册内容:多元函数微分法及其应用,重积分及其应用,曲线积分与曲面积分,
本书是普通高等教育“十三五”规划教材,涵盖了*指定的大学本科高等数学教学基本要求的内容,全书分为上、下两册,共分为15个模块.上册主要内容为函数、极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用等7个模块;下册内容为微分方程、向量代数与空间解析几何、多元函数微积分、无穷级数共分为8个模块.本书内容深入浅出,结构严谨,体系新颖,例题典型,注重应用,每个模块都配有不同类型的习题,重视对学生应用数学知识解决实际问题能力的培养.
《21世纪高等学校数学系列教材:高等数学(下册)(第3版)》在传统的经济类高等数学的基础上内容稍有拓宽,主要是加强了空间解析几何和无穷级数方面的内容。 《高等数学》的*特色是:每一章都按时下流行的考试命题模式,配备一套针对本章内容的综合练习题。此外,在全书后,还配有两套综合全书内容的综合练习题。这些试题,既有深度,又有一定的难度。熟练地掌握这些试题的解题思路及证明方法,对将来考研将起到很好的桥梁作用。
苏保河等编的《高等数学/高等学校通识课程教材系列》共分为九章,包括函数与Mathematica简介、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、无穷级数、多元函数、微分方程与差分方程简介等内容。其中章至第六章由苏保河编写,第七章至第九章由刘中学编写。各章配有习题,并附有习题参考答案。本书的特点是将功能强大的计算机和数学软件 Mathematica融人高等数学教学之中,力图降低学生的学*担,提高学生的数学能力。参加本书审稿的有:吴广庆、杜萍、王为民、洪莉、张越等,全书由苏保河教授审核定稿。 《高等数学/高等学校通识课程教材系列》适用于经济管理类各专业本科生和对数学要求不太高的理工医农各专业本科生作为高等院校“高等数学”(或“微积分 ”)课程的教材或教学参考书;尤其适用于