《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的优秀论文,对相关的问题做深入细致的解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》针对2003年及2004年MCM/ICM竞赛的6个题目:特技演员的安全问题、伽马刀治疗方案问题、航空行李扫描策略问题、指纹的性问题、快速通过系统设计问题以及校园网安全措施的优化配置问题进行了解析与研究。 《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》内容新颖、实用性强,可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时还可供研究相关问题的
本书为主教材配套使用的习题集,作者针对此次再版《运筹学》的学习内容编写了每一章的习题及答案,共十二章,其中上篇为八章,下篇为四章。再基于主教材上、下篇的划分,在上篇结束部分编写了上篇知识点练习题及上篇知识点练习题答案;在下篇结束部分编写了下篇知识点练习题及下篇知识点练习题答案。另外,在本习题集的*后,在总结历年研究生考试题特点的基础上,编写了10余套综合模拟题及综合模拟题答案。本书适合与主教材配套使用,同时由于主教材被列为18年西南交大硕士研究生考试指定参考教材,也可供参加研究生考试的学生学习参考。
龙子泉主编的《运筹学 教程》为研究生课程“高等运筹学”的教材,其主要内容有:非线性规划理论及其应用、应用马尔可夫过程、排队论、存储论以及组合优化等。在内容和体系安排上,体现了管理科学与工程学科的基本要求。在原理方法的叙述上,力求做到既简明精练,又保留较为清晰的推演,同时安排了一定数量的理论联系实际的应用。 本书可作为高等院校管理工程类专业的研究生教材,同时也可以作为管理工程类专业高年级本科生的选修课教材或其他相关专业研究生教材或教学参考书。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
龙子泉主编的《运筹学 教程》为研究生课程“高等运筹学”的教材,其主要内容有:非线性规划理论及其应用、应用马尔可夫过程、排队论、存储论以及组合优化等。在内容和体系安排上,体现了管理科学与工程学科的基本要求。在原理方法的叙述上,力求做到既简明精练,又保留较为清晰的推演,同时安排了一定数量的理论联系实际的应用。 本书可作为高等院校管理工程类专业的研究生教材,同时也可以作为管理工程类专业高年级本科生的选修课教材或其他相关专业研究生教材或教学参考书。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。
龙子泉主编的《运筹学 教程》为研究生课程“高等运筹学”的教材,其主要内容有:非线性规划理论及其应用、应用马尔可夫过程、排队论、存储论以及组合优化等。在内容和体系安排上,体现了管理科学与工程学科的基本要求。在原理方法的叙述上,力求做到既简明精练,又保留较为清晰的推演,同时安排了一定数量的理论联系实际的应用。 本书可作为高等院校管理工程类专业的研究生教材,同时也可以作为管理工程类专业高年级本科生的选修课教材或其他相关专业研究生教材或教学参考书。
《非对称作战数学建模与仿真分析》是在总结作者近年教学心得和科研成果的基础上写作的一部学术性较强的军事技术理论著作,其目的是为探究非对称作战活动规律、发展完善非对称作战理论、指导非对称作战运用提供支持。《非对称作战数学建模与仿真分析》共分10章。章和第2章主要论述非对称作战的基本概念和主要特征,作战基本要素非对称运用的表现形式以及作战的非对称运行机理;第3章~0章是《非对称作战数学建模与仿真分析》的核心内容,建立了综合评价模型、多目标规划模型、指数法模型、兰彻斯特方程模型、突变分析模型、基于多智能体的作战仿真模型、基于复杂网络和数据场理论的作战仿真模型,并进行了非对称作战仿真实验系统设计及典型应用分析。
《运筹学》系统地介绍了运筹学的主 要内容,包括线性规划、对偶规划、特殊线性规划( 含运输规划、整数规划和目标规划)、动态规划、图 与网络分析、排队论、存储论、决策论和对策论。在 重点说明运筹学各主要分支的基本原理、模型和方法 的基础上,突出案例分析或实例分析以加强其应用性 :每章开始有内容简介,结束有小结与展望,便于读 者阅读学习;例题以及习题涉及面较广,代表性强。 本书编写坚持以问题为导向,注重理论与实践相联系 ,具有一定理论上的深度和应用上的广度。 《运筹学》属于普通高等教育“十二五”经济与 管理类专业核心课程规划教材,既适用于经济管理类 本科学生使用,也可供研究生以及相关管理人员学习 参考。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
运筹学的根本目的是寻找解决形形色色的实际问题的一个“解”。运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质;运筹学的学习和入门不需要艰深的数学知识做基础,仅需微积分、线性代数和概率论的一些基本知识。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》共分13章,內容包括线性规划、对偶理论、整数规划、运输问题、多目标规划、目标规划、动态规划、非线性规划、图论、决策论、对策论、存贮论、排队论、统筹方法等。各章都附有练习题,并提供了较详细的参考答案。附录介绍了当今流行的计算化问题的LINGO软件。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》可作为财经类专业本科生、研究生的必修或选修运筹学课程的教材,也可作为相关领域读者学习运筹学的参考书。
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。