差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书最具价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
本书围绕数据模型及计算主线,按共性算法案例、数据工程领域中数据计算案例展开.第1章(概述篇)概述了数据建模与计算的思想与方法,提出了数据建模的多模型融合思想和数据计算的多算法集成策略,让模型和算法点亮数据的光芒.第2章到第6章(共性算法篇)例举了若干共性数据计算方法,包括几何模型重建、图像处理中的优化算法、数值微分算法、主成分分析方法与改进、数据拟合的梯度型优化算法.第7章到第17章(数据建模与计算篇)围绕统计生成性模型与数据机理模型融合、多算法集成创新主线,例举了十一个数据工程领域数据建模与计算的案例,涉及医学、金融、量化投资、图像处理、智能决策、音乐流派分类、疫情数据分析、功能服装设计、海洋数据分析等领域的数据分析及应用.后记概括了本书的主要特点和核心内容,强调了数据模型融合和算法集成是上策,对未来进
无
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
由科恩著的《计算代数数论教程(英文版)》介绍了148种算法,它们是数论计算的基础,其中包括与数论、椭圆曲线、素性测定和因式分解等相关的计算。 书中对每种算法都作了完整的理论介绍,将学习者需要的理论基础降到 。书中对每个算法的详细描述实现了其直接在计算机上的运行,并且给出了众多的进一步的执行提示。书中的许多算法在别的书上从来没有被看到过,或者说它们 次以书的形式出现在我们面前。
由科恩著的《计算代数数论教程(英文版)》介绍了148种算法,它们是数论计算的基础,其中包括与数论、椭圆曲线、素性测定和因式分解等相关的计算。 书中对每种算法都作了完整的理论介绍,将学习者需要的理论基础降到 。书中对每个算法的详细描述实现了其直接在计算机上的运行,并且给出了众多的进一步的执行提示。书中的许多算法在别的书上从来没有被看到过,或者说它们 次以书的形式出现在我们面前。
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的“理解数字”开始,又划分多个知识点,递进式讲述,衔接连贯。每章节在描述时