阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
本书根据PL/SQL的新版本进行了全面更新,涵盖从基础语法、程序控制到最新的优化和调优增强等方面的知识,通过真实的实验、大量的示例讲解了PL/SQL技能,是一本逐步分解的、详尽的PL/SQL编程教程。读者可以按照本书的步骤一步一步地完成每一个关键任务,掌握Oracle 21c PL/SQL编程技术,深度探索PL/SQL编程技术及最佳实践。本书既适合新手数据库开发人员和DBA阅读,也适合有一定经验的从业人员阅读。
《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》由李杨著
在大数据时代,我们并不缺少数据,缺少的是利用数据分析的思维和工具去解决实际问题的能力。数据化分析是运用恰当的方法和工具,对数据进行科学、有效的分析,从而提出有理有据、具有可操作性的建议,以解决现实中的难题。本书主要介绍了数据分析的9 种思维、7 种工具、学习方法、基本方法、展现方法、制作数据分析报告的方法,以及数据分析的思维模型。本书适合所有对数据分析感兴趣的读者阅读,特别是在工作或生活中需要经常跟数据接触的人,如数据分析师、产品经理、运营人员、管理人员、财务人员等。
这是一本从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,完整呈现OLAP查询的核心流程和OLAP引擎设计思路,并指导读者形成OLAP引擎设计解决方案的专业技术工具书。本书不仅面向初级读者介绍了OLAP查询的基本原理和Presto使用方法,还从源码级剖析了OLAP引擎核心原理,包括SQL查询解析器、优化器、调度器、执行器等核心组件,并将内容扩展到OLAP引擎的常见高性能优化方案上。全书由浅入深,图文并茂,把晦涩难懂的内容讲解得透彻易懂。本书分为6篇,包括14章。第一篇(第1章和第2章)总体介绍业界常见的OLAP引擎并分析其优劣,讨论OLAP引擎的技术发展趋势及选型方法,介绍Presto背景知识及其使用方法、技巧。第二篇(第3章和第4章)串讲OLAP查询执行的整个过程,并概要性介绍查询解析器、优化器、调度器、执行器等核心模块的工作原理,
Python是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,得到越来越多开发者的喜爱,广泛应用于Web开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析及其应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python来做预测,不仅能够在业务上快速落地,还让代码维护更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。本书共分为3篇。第1篇介绍预测基础,主要包括预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握预测的基本步骤和方法思路。第2篇介绍预测算法,该部分包含多元回归分析、复杂
本书介绍了数字孪生的概念和流程,帮助读者了解当前数字化的环境和趋势,并快速建立MicroStation直觉式绘图环境。本书分为13章,从数字孪生基础概念讲到数字孪生生态环境,然后进一步讲述如何使用MircoStation。内容包括使用方法、工作环境、空间定位、对象创建与修改、视图、三维操作、引用、单元对象、图纸输出、注释对象、打印输出。本书不仅适合作为广大学习、使用MicroStation软件人员的参考书,而且也可作为建筑行业的专业人员、研究人员、软件开发工程师、BIM爱好者及高校师生的常备参考书。
本书由国内资深MySQL专家亲自执笔,国内外多位数据库专家联袂推荐。作为国内专享一本关于InnoDB的专著,本书的第1版广受好评,第2版不仅针对近期新的MySQL 5.6对相关内容进行了全面的补充,还根据广大读者的反馈意见对第1版中存在的不足进行了完善,全书大约重写了50%的内容。本书从源代码的角度深度解析了InnoDB的体系结构、实现原理、工作机制,并给出了大量很好实践,能帮助你系统而深入地掌握InnoDB,更重要的是,它能为你设计管理高性能、高可用的数据库系统提供不错的指导。 全书一共10章,首先宏观地介绍了MySQL的体系结构和各种常见的存储引擎以及它们之间的比较;接着以InnoDB的内部实现为切入点,逐一详细讲解了InnoDB存储引擎内部的各个功能模块的实现原理,包括InnoDB存储引擎的体系结构、内存中的数据结构、基于InnoDB存储引擎的表和页的物理存
本书全面深入地探讨了有效数据管理面临的挑战、复杂性及其巨大价值;定义了一套数据管理的指导原则,阐述了如何将这些原则应用于不同的数据管理功能领域;提供了企业级数据管理实践的功能框架,涵盖广泛采用的实践、方法、技术、职能、角色、交付成果和衡量标准;确立了数据管理的通用术语体系,成为数据管理专业人员很好实践的基础。本书为数据管理和IT专业人员、企业高管、知识工作者、教育者和相关研究人员提供了数据管理知识体系框架,帮助他们更好地管理数据、优化数字基础设施。
本书以TiDB数据库为基础介绍分布式数据库的运行原理、性能优化和应用场景架构设计。首先,剖析分布式数据库的运行原理与架构;然后,阐述分布式数据库TiDB在表与索引的设计优化、SQL优化、系统级优化方面的方法论,通过融入多个有代表性的案例,帮助读者将方法论对应到生产实践中;最后,梳理场景选型和架构设计过程中读者应该掌握的主要知识点,并对一些分布式数据库的优势场景进行了详细介绍。 本书适合希望了解分布式数据库原理,学习TiDB数据库的开发工程师、数据库管理员和架构师阅读,也可以作为高等学校教师或学生学习分布式数据库的参考教材。
阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
《Python金融大数据分析 第2版》分为5部分,共21章。第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了Python的基础知识以及Python中非常有名的库NumPy和pandas工具集,还介绍了面向对象编程;第3部分介绍金融数据科学的相关基本技术和方法,包括数据可视化、输入/输出操作和数学中与金融相关的知识等;第4部分介绍Python在算法交易上的应用,重点介绍常见算法,包括机器学习、深度神经网络等人工智能相关算法;第5部分讲解基于蒙特卡洛模拟开发期权及衍生品定价的应用,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值等知识。《Python金融大数据分析 第2版》本书适合对使用Python进行大数据分析、处理感兴趣的金融行
《Python金融大数据分析 第2版》分为5部分,共21章。第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了Python的基础知识以及Python中非常有名的库NumPy和pandas工具集,还介绍了面向对象编程;第3部分介绍金融数据科学的相关基本技术和方法,包括数据可视化、输入/输出操作和数学中与金融相关的知识等;第4部分介绍Python在算法交易上的应用,重点介绍常见算法,包括机器学习、深度神经网络等人工智能相关算法;第5部分讲解基于蒙特卡洛模拟开发期权及衍生品定价的应用,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值等知识。《Python金融大数据分析 第2版》本书适合对使用Python进行大数据分析、处理感兴趣的金融行
本书是企业业务数据分析方法的集大成著作,由知名数据分析研究机构CDA数据科学研究院组织多名行业知名专家进行研讨、策划、编著而成。书中内容源自对各行业领军企业实际业务数据分析技能需求的提炼及总结,这些企业包括但不限于、、腾讯、百度、德勤、毕马威、IBM、微软、GrowingIO等。全书由八大部分构成:绪论、表格结构数据与表结构数据、数据库应用、描述性统计分析、多维数据透视分析、业务分析方法、业务分析报告与数据可视化报表、CDA职业发展。本书适合CDALEVEL I应试人员、企业业务工作人员、数据分析从业人员、数据相关岗位求职人员学习。