本书是为广大数据分析师量身定制的入门读物,它旨在帮助读者站在大数据时代的制高点。数据分析处于统计学、计算机信息科学、运筹学、数据库等多个领域的交叉地带,大数据时代的到来大大丰富了数据分析的内涵,数据分析师的职责与以往相比发生了巨大的改变。本书全面介绍了经典数据分析、模式识别、机器学习、深度学习、数据挖掘、商务智能等多个领域的数据分析算法,将大数据时代的数据分析热点技术一网打尽。本书为每个数据分析算法都搭配了一个经典案例,并按照由易到难的原则构建知识框架,充分照顾了不同水平读者的阅读习惯。通过阅读本书,读者将对大数据时代下的数据分析有一个全面的认识。无论是入门级的数据分析员还是有一定基础的数据分析师,都能通过本书完善、加深对数据分析的认识。
本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
本书通过选购笔记本电脑的案例引入数据包络分析(dataenvelopmentanalysis,DEA)的基本概念和模型,并运用简单的EXCEL模型让读者更易理解和运用DEA。本书着重阐述如何将DEA作为一种运营分析工具,进行绩效评估,找出基准标杆。探讨的主题包括:平衡的基准,昀佳实践,相对效率的概念及绩效提升。特别地,本书探讨的数据分析方法能够帮助一个组织重新审视它对生产效率高低的已有观点是否合理,并为组织不断改进提供指导。本书是市面上唯一本不要求读者具备线性规划和线性代数知识,就可以熟练应用DEA方法的DEA方法指导用书。
在新媒体时代,如果对新闻报道、网上搜索的结果或者所谓的 专家告知 不加思考地完全相信,那你就等着上当受骗吧! 本书围绕当今*受瞩目的大数据科学理论,通过日本政府公布的公开数据,集中针对访日游客的增加、舆论调查的可靠性、 安倍经济学 的成果、东日本大地震后的状况、相对贫困、失业率的下降、年轻人远离ХХ、全球变暖问题、减肥、恩格尔系数的上升等10个主题进行数据解读,帮助读者模拟体验数据读取方法,提高理解和分析数据的能力,挖掘出数据背后隐藏的真相。 作为 大数据分析 的超级入门书,即使不擅长数学、不了解统计学的人,读完本书也可以彻底掌握数据解读方法!
为顺应国内EPC 总承包工程推广的新形势, 提高企业风险管理水平, 普及工程保险知识, 特编写本书。 书中内容紧密结合国际先进工程保险理念, 对于在EPC 工程中涉及的工程险种、 安排、 采购、 合同后管理等问题均做了较为全面、 细致的分析。 同时, 列举了我国著名企业在海内外EPC 实践中实施保险策略的典型案例。本书可供从事EPC 项目或准备从事EPC 项目的公司领导、 项目经理、 风险管理人员、 监理、 咨询人员等作为岗位继续教育教材使用; 也可作为工程管理、 保险、 经贸专业在校研究生以及本科生的教学参考书或课外读物;也适合作为建设行业推行EPC 总承包模式进行系列培训的教材或参考用书。