本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用算法为软件开发助力。前三章介绍算法基础,包括二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如何时采用分而治之、贪婪算法或动态规划,哈希表的应用,图和树算法,K最近邻算法等。这一版将示例代码更新到了Python 3,并新增了两章专门讨论树,加之诸多修订,使得内容更加完善。
《算法竞赛入门经典(2版)》是一本算法竞赛的入门与提高教材,把C/C 语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧。全书内容分为12章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、C 与STL入门、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法、高级专题等内容,覆盖了算法竞赛入门和提高所需的主要知识点,并含有大量例题和习题。书中的代码规范、简洁、易懂,不仅能帮助读者理解算法原理,还能教会读者很多实用的编程技巧;书中包含的各种开发、测试和调试技巧也是传统的语言、算法类书籍中难以见到的。 《算法竞赛入门经典(2版)》可作为全国青少年信息学奥林匹克联赛(NOIP)复赛教材、全国青少年信息学奥林匹克竞赛(NOI)和ACM国际大学生程序
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了各种数据结构和算法的基本原理。第1章介绍了链表、数组、栈等数据结构;从第2章到第8章,分别介绍了和排序、查找、图、安全、聚类、数据压缩等相关算法,较为全面地介绍常见算法与数据结构知识。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,易于理解,便于学习和记忆。将本书作为算法入门的第一步,是非常不错的选择。
本书通过趣味游戏编程项目讲解算法,提升读者学习算法的兴趣,降低读者学习算法的难度,增强读者将算法应用于编程实践的能力。 本书共 14 章,通过猜数字、飞翔的小鸟、得分排行榜、汉诺塔、八皇后、消灭星星、贪吃蛇、走迷宫、连连看、吃豆人、滑动拼图、井字棋、垒积木、十步万度等游戏,讲解顺序查找算法、二分查找算法,图形库 EasyX,插入排序算法、冒泡排序算法、选择排序算法、快速排序算法,递归算法,暴力搜索算法、回溯算法,FloodFill 算法,常见的数据结构(数组、链表、队列、栈、图、树)、标准模板库(STL),十字分割算法、图的广度优先搜索算法和深度优先搜索算法,加权图上的迪杰斯特拉算法、贪婪优先搜索算法、A*算法,状态空间上的搜索算法,博弈树的极大极小值搜索算法、 - 剪枝搜索算法,动态规划算法,遗传算法。 本书
随着机器视觉技术的飞速发展,大量需要使用机器视觉代替人工检测的需求应运而生。Halcon在开发机器视觉项目中表现出的高效性和稳定性,使其应用范围非常广泛。本书将针对机器视觉的原理和算法,以及如何应用算法解决问题进行探讨和说明,并利用Halcon对各种机器视觉算法进行举例,让读者全面、深入、透彻地理解Halcon机器视觉开发过程中的各种常用算法的原理及其应用方法,提高实际开发水平和项目实战能力。同时,也为机器视觉项目的管理者提供项目管理和技术参考。 《Halcon机器视觉算法原理与编程实战》适合需要全面学习机器视觉算法的初学者,希望掌握Halcon进行机器视觉项目开发的程序员,需要了解机器视觉项目开发方法的工业客户、机器视觉软件开发项目经理、专业培训机构的学员,以及对机器视觉算法兴趣浓厚的人员阅读。
软件质量,不但依赖架构及项目管理,而且与代码质量紧密相关。这一点,无论是敏捷开发流派还是传统开发流派,都不得不承认。 本书提出一种观点:代码质量与其整洁度成正比。干净的代码,既在质量上较为可靠,也为后期维护、升级奠定了良好基础。作为编程领域的佼佼者,本书作者给出了一系列行之有效的整洁代码操作实践。这些实践在本书中体现为一条条规则(或称 启示 ),并辅以来自实际项目的正、反两面的范例。只要遵循这些规则,就能编写出干净的代码,从而有效提升代码质量。 本书阅读对象为一切有志于改善代码质量的程序员及技术经理。书中介绍的规则均来自作者多年的实践经验,涵盖从命名到重构的多个编程方面,虽为一 家 之言,然诚有可资借鉴的价值。
《深入浅出算法竞赛(图解版)》是为帮助读者理解基本的算法思想和编写高效的解决问题的程序而编写的。全书共6章,第1章概述了算法与算法竞赛的知识;第2章介绍了计算机程序解决问题的基本方法 穷举算法与贪心算法;第3章讲解了随机算法,如何利用概率与期望优化算法的效率;第4章讲解了AI的思维模式 搜索算法,如何用更灵活的方式遍历每一种可行解;第5章讲解了动态规划,如何通过状态间的转移,巧妙地规划解;第6章讲解了将大事化小、小事化了的分治算法,如何将问题拆分为易于解决的小问题。 本书配备了大量的算法竞赛试题,使用算法竞赛常用的C 语言编写。同时,本书不拘泥于算法竞赛,在第2 ~ 6章的后每一节给出一段阅读材料,介绍算法有趣的应用,帮助读者拓宽思维。 本书的讲解避开了繁琐枯燥的理论,采用浅显易懂的语言和大量生动
算法是个有趣的东西 针对某个问题设计算法的时候,不会的人感觉像 大海捞针 ,而会的人则感觉像 一苇渡江 。高手的头脑里都有一张 算法地图 ,算法之间不是孤立的,而是彼此连通的。算法之间的内在联系有很多,但挖掘到根源上,就是递推与递归两种思想。本书从深度解析递推和递归这两个基本算法思想开始,用它们贯穿起了《算法导论》中的几十个经典算法,包括排序、查找、回溯、贪心、分治、动态规划、图算法等。 本书成稿自作者的教案,秉承了作者一贯的风趣幽默又不失严谨的写作风格,同时融入了学习心理学和认知科学的实践原理。作者的诸多学生在参加完以本书内容为蓝本的集训后进入了微软、脸书、亚马逊、领英、甲骨文等公司,所以本书是经过千锤百炼的一线教学成果。本书适合于所有想通过学习算法来精进自己编程能力的读者。为了倾
《智能优化算法与MATLAB编程实践》介绍了国内外新研发的10种智能优化算法,对每种算法的灵感来源、实现过程、函数编程、案例应用都进行了细致描述并给出详细的MATLAB代码,使读者快速掌握智能优化算法的学习和应用方法。 全书共分为12章,前10章分别介绍10种智能优化算法的原理、MATLAB实现、具体函数寻优求解过程和应用案例;第11章列举了23种衡量智能优化算法性能的常见测试函数,并给出MATLAB代码;第12章重点介绍智能优化算法的评价指标体系,选取部分测试函数和文中算法进行测试与分析,并给出完整MATLAB代码,供读者参考。 本书的主要特点为算法新颖,要素齐全,案例丰富,可移植性和实战性强。理论研究和工程技术人员可通过本书快速理解、掌握书中算法,节省大量时间,感兴趣的读者可以在此基础上进行深入研究。 本书可作为本科生、研究生和教
《算法竞赛入门经典 算法实现》精选《算法竞赛入门经典(第2版)》和《算法竞赛入门经典 训练指南(升级版)》中的经典题目,按算法要点和竞赛考点重新进行分拆和归类,提供了240余套简洁、高效、规范的完整代码模板。此外,也加入了一些虽然未在两本书中出现,但实际上对初学者入门非常重要的题目代码。借助于这些模板,读者在练习环节和比赛时,可大大减轻因来回琢磨代码实现细节而导致调试时间大幅增加的压力。 《算法竞赛入门经典 算法实现》共分7章,第1章介绍C 编程基础与STL,第2章介绍算法设计与优化,第3章介绍数学相关算法,第4章介绍数据结构,第5章介绍字符串,第6章介绍计算几何,第7章介绍图论。 《算法竞赛入门经典 算法实现》题目覆盖了ACM/ICPC/NOI/NOIP等算法竞赛的大多数经典题型和细分算法要点,内容全面,信息量
智能优化算法在解决大空间、非线性、全局寻优、组合优化等复杂问题方面具有独特的优势,因而得到了国内外学者的广泛关注,并在信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域得到了成功应用。本书介绍了8种经典智能优化算法 遗传算法、差分进化算法、免疫算法、蚁群算法、粒子群算法、模拟退火算法、禁忌搜索算法和神经网络算法的来源、原理、算法流程和关键参数说明,并给出了具体的MATLAB仿真实例。对于要用这些算法工具来解决具体问题的理论研究和工程技术人员,通过本书可以节省大量查询资料和编写程序的时间,通过仿真实例可以更深入地理解、快速地掌握这些算法。
《算法零基础一本通(Python版)》使用 Python 指导读者从零开始学习算法 :由基础数据结构开始,逐步解说信息安全算法,*后也讲解了人工智能入门领域的 KNN 和 K-means 算法。《算法零基础一本通(Python版)》包含约 120 个程序实例,使用约 600 张完整图例,深入讲解了 7 种数据结构和数十种算法,此外也针对国内外著名公司招聘程序员的算法考题做了讲解。《算法零基础一本通(Python版)》实用性强、案例丰富,适合有一定 Python 基础的读者使用,也可作为大中专院校及培训机构的参考教材。
机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。 《机器学习实战》第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。 《机器学习实战》通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计
《集成学习入门与实战:原理、算法与应用》通过6章内容全面地解读了集成学习的基础知识、集成学习技术、集成学习库和实践应用。其中集成学习技术包括采样、Bagging、投票集成、Boosting、AdaBoost、梯度提升、XGBoost、Stacking、随机森林、决策树等,从混合训练数据到混合模型,再到混合组合,逻辑严谨、逐步讲解;同时也对ML-集成学习、Dask、LightGBM、AdaNet等集成学习库相关技术进行了详细解读;后通过相关实践对集成学习进行综合性应用。本书配有逻辑框图、关键代码及代码分析,使读者在阅读中能够及时掌握算法含义和对应代码。 本书适合集成学习的初学者和机器学习方向的从业者和技术人员阅读学习,也适合开设机器学习等算法课程的高等院校师生使用。
本书较为系统地介绍最优化领域中比较成熟的基本理论与方法。基本理论包括最优化问题解的必要条件和充分条件以及各种算法的收敛性理论。介绍的算法有:无约束问题的最速下降法、Newton法、拟Newton法、共辄梯度法、信赖域算法和直接法;非线性方程组和最小二乘问题的Newton法和拟Newton法;约束问题的罚函数法、乘子法、可行方向法、序列二次规划算法和信赖域算法等。还介绍了线性规划的基本理论与单纯形算法以及求解二次规划的有效集法。并简单介绍了求解全局最优化问题的几种常用算法。 作为基本工具,本书在附录中简要介绍了求解线性方程组的常用直接法和选代法以及MATLAB初步知识。
本书全面、系统地总结了在准备程序员面试过程中推荐的数据结构与算法。本书首先详细讨论整数、数组、链表、字符串、哈希表、栈、队列、二叉树、堆和前缀树等常用的数据结构,然后深入讨论二分查找、排序、回溯法、动
《算法笔记》内容包括:C/C 快速入门、入门模拟、算法初步、数学问题、C 标准模板库(STL)、数据结构专题(二章)、搜索专题、图算法专题、动态规划专题、字符串专题、专题扩展。《算法笔记》印有二维
《算法笔记》内容包括:C/C 快速入门、入门模拟、算法初步、数学问题、C 标准模板库(STL)、数据结构专题(二章)、搜索专题、图算法专题、动态规划专题、字符串专题、专题扩展。《算法笔记》印有二维
《算法笔记》内容包括:C/C 快速入门、入门模拟、算法初步、数学问题、C 标准模板库(STL)、数据结构专题(二章)、搜索专题、图算法专题、动态规划专题、字符串专题、专题扩展。《算法笔记》印有二维
《算法笔记》内容包括:C/C++快速入门、入门模拟、算法初步、数学问题、C++标准模板库(STL)、数据结构专题(二章)、搜索专题、图算法专题、动态规划专题、字符串专题、专题扩展。《算法笔记》印有二维码,用来实时更新、补充内容及发布勘误的。《算法笔记》可作为计算机专业研究生入学考试复试上机、各类算法等级考试(如PAT、CSP等)的辅导书,也可作为“数据结构”科目的考研教材及辅导书内容的补充。《算法笔记》还是学习C语言、数据结构与算法的入门辅导书,非常适合零基础的学习者对经典算法进行学习。
本书融入了游戏设计思想,通过游戏攻关的方式,介绍各种算法的原理和应用。全书共分8章,具体包括排序算法、穷举算法、递归算法、回溯算法、贪心算法、分治算法,栈、队列、树三种数据结构,动态规划算法,图论相关算法等内容。