本书将基础经济学、高频数据的经验基础和数学工具以及模型联系在一起,为读者在试图理解和设计成功的交易算法时面对的各种各样的问题,提供足够广阔的视野。本书分为三个部分。第一部分给出了交易市场的基本概念、理论以及经验事实。第1章介绍了电子交易市场、市场参与者和订单簿。第2章概述了金融微观结构市场模型。第3章和第4章对市场进行了实证和统计分析。第二部分也就是第5章介绍了交易算法分析相关的数学工具。第三部分深入研究算法交易策略的建模。第6-8章涉及最优执行策略,即代理商必须在预先指定的窗口上清算或收购大头寸,使用市价单或限价单进行持续交易。第9章涉及基于交易量日程的执行算法,为希望跟踪市场整体交易量的投资者制定战略。第10章展示了做市商如何在限价订单簿中选择限价单的发布位置。考虑了包括对库存风险的
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书最具价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
本卷是在前两卷的基础上对集合论保证无穷集合存在的无穷公理的层次分析。这种分析既包含组合分析,也包含逻辑分析;既包含内模型分析,也包含外模型分析;归根结底是揭示各种高阶无穷公理对整个集合论论域的影响,尤其是对实数集合的影响。因此,第三卷的第1章侧重于大基数的组合分析、逻辑分析以及内模型构造;第2章侧重于在大基数上构造各种各样的具有典范意义的力迫扩张,从而解决包括奇异基数假设在内的一些长期遗留问题的独立性问题;第3章侧重于分析高阶无穷对实数子集合正则性的影响。
本书讲述偏微分方程现代理论的最基础部分,内容共五章.其中前两章系统介绍函数空间、广义函数和Fourier分析理论的最基础部分,是学习偏微分方程现代理论必须具备的最基本的分析学知识,第3和第4两章系统讲述了二阶线性椭圆型方程和二阶线性抛物型、双曲型和Schr?dinger型三类发展型方程的最基础理论,这两章内容的学习能够基本满足希望专门研究椭圆型方程、抛物型方程或非线性发展方程以及相关学科领域读者的需要.最后一章简要介绍线性偏微分方程一般理论和拟微分算子理论.本书最突出的特点是把椭圆型方程和抛物型方程的Cμ理论与Lp理论都用Fourier分析理论做了统一的处理,并把这些理论都构建在L2理论之上,从而使得这些以前需要与偏微分方程的Fourier分析方法独立地学习的不同理论体系很自然地融合在一起.
《10000个科学难题 数学卷》是*、科学技术部、中国科学院和国家自然科学基金委员会联合组织开展的 10000个科学难题 征集活动的重要成果,书中的题目均由国内国际知名的数学专家撰写。书中收集了有关数学很多分支学科及数学的应用等方面的大量问题,以及当今一些重要的数学问题。
本书从几个著名数学问题出发,深入浅出地讲解了与我国初高中的教学实际紧密联系的数学知识,并把知识内容与数学核心素养结合起来。在这条知识主线的周边,穿插介绍知识内容的历史发展过程,对相关数学分支在数学史上的地位进行深入思考,并辅之以数学文化、趣味知识、数学游戏、数学悖论等茂盛枝叶。全书共6章,第1章介绍无处不在的杨辉三角;第2章介绍当我们谈论正方体时,我们能够谈论些什么;第3章介绍了神奇的 2;第4章介绍斐波那契数列与黄金分割;第5章介绍圆锥曲线面面观;第6章介绍感悟数学的魅力与威力。 本书根据中学生的实际需要,并结合 500多幅精美的插图进行讲解,全书讲解清晰自然、特色鲜明,非常适合初高中学生、初高中数学教师、数学爱好者阅读。
1977年,为考查一年级的博士研究生是否已经成功掌握为攻读数学博士学位所需的基本数学知识和技能,加州大学伯克利分校数学系设立了一项书面考试,作为获得博士学位的首要要求之一。该项考试自其创设以来,已成为研究生获得博士学位必须克服的一个主要障碍。本书的目的即为出版这些考试材料,以期对本科生准备该项考试有所帮助。 全书收录最近25年的1250余道伯克利数学考试试题,对所有计划攻读数学博士学位的学生,本书中的试题和解答都颇具价值,读者研读完本书,在诸如实分析、多变量微积分、微分方程、度量空间、复分析、代数学及线性代数等学科的解题能力都将得到提高。 这些问题按学科及难易程度编排,每道试题均注明相应的考试年月,读者可以依此方便地整理由各套试题。附录介绍如何得到电子版试题,考试大纲以及各次考试的
第1-12章是《测度论基础与高等概率论》上册,其中第1,2章是预备知识,第3-12章是测度论基础。 本书强调背景知识的深刻描述、基本概念的自然引入、科学素养的悄然渗透,从谋篇布局到板块转换,直至例题编制都精雕细琢,从章节引言到问题切人,直至定义、引理、命题、定理前的导语都字斟句酌。为避免初学者从初等概率论到高等概率论因跃迁幅度过大而产生困惑,在理论阐述方面力求小坡度爬行、稳扎稳打、拾级而上。尽量在本书范围内自成体系,扫除读者手中缺少相关资料带来的苦恼。另外,注重各板块知识的内在联系,留意高等概率论发展史上有深刻影响人物的介绍和历史线索的呈现。
佩捷、朱惠霖编著的《从比勃巴赫到德布朗斯--比勃巴赫猜想的历史(精)/影响数学世界的猜想与问题》详细介绍了德布朗斯证明比勃巴赫猜想的历程及相关的数学专业理论,本书适合于高等学校数学及相关专业师生使用,也可供数学史爱好者阅读。
本书共分三卷。 上卷共分五编,分别为 编近世几何学初编,第二编几何作图题解法及其原理,第三编初等几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形。 本书适合大学生、中学生及平面几何爱好者。 中卷共分四章,分别为 章圆周的答分和正多边形,第二章线的连接,第三章比例,斜率和锥度,第四章曲线。 本书适合大学生、中学生及平面几何爱好者研读。 下卷共分六编,分别为: 编D·希尔伯特论平面几何作图问题,第二编F·克莱茵论平面几何作图问题,第三编И·И·亚历山大洛夫论平面几何作图问题,第四编Л·И·别列标尔金论平面几何作图问题,第五编考斯托夫斯基论尺规作图,第六编平面几何作图问题散论,及附录。 本书适合大学生、中学生及平面几何爱好者。
佩捷等著的《从布尔到豪斯道夫--布尔方程与格论漫谈》主要介绍布尔代数、广义布尔代数、布尔矩阵、布尔方程等一系列知识,并讨论它们在逻辑线路等方面的应用,还介绍了格论、格群、格环的一些相关知识。 《从布尔到豪斯道夫--布尔方程与格论漫谈》适合于高等学校数学及相关专业师生使用,也适合于数学爱好者参考阅读。
《运筹学导论(0版)》作为运筹学领域的佳作,是美国多所高校的运筹学教材用书,销售量一直名列前茅。原著作者长期从事运筹学的教学和科研工作,是业界的佼佼者。原著具有内容翔实、专业性强、应用价值高等特点,对靠前同类著作产生了重大影响。翻译出版该著作,对于丰富和发展我国军事管理学和运筹学理论和方法体系,完善军事管理学的定量研究手段,具有较大的理论价值和实践意义。译著可作为运筹学、管理学、系统工程等专业的教材,也可作为从事军事管理、经济管理等领域的研究人员的参考用书。
本书深入浅出地介绍了与数学建模基础有关的内容,重点放在微分方程模型、运筹学模型和数理统计模型方面,着重讲述建模的基本思想和模型求解的基本方法,以及运用数学软件求解数学模型的方法。包括数学建模人门、微分方程模型、线性规划模型、动态规划模型、最优化模型、图论与网络模型、数理统计模型、多元分析模型和计算机模拟等9章内容,同时还包括三个附录,分别是MATLAB软件的使用、LINGO软件的使用和R软件的使用。本书的重点放在数学模型的建立以及问题的分析与描述上,使读者能够举一反三,运用计算机软件解决实际问题。