本书是一本简单的书也是一本复杂的书,是一本遥远的书也是一本亲近的书。在书中,作者为大家介绍了10位来自不同地区的数学先驱的生平事迹与他们的伟大成就。也许其中介绍的一些数学问题你并不了解,也许里面的一些专业术语你并不熟悉,但是这并不会妨碍你对他们伟大人格的理解,也不妨碍你从他们身上了解到一些投身科学的精神。希望每个人都能从这本书中得到一定的启发,也相信通过作者的生动描述会让大家对看似枯燥的数学有一个崭新的认识。
本书是一本数学趣题经典,是由Sam Loyd精心编撰,每道趣题都需要数学来解答谜题,有简单也有复杂,有些谜题是经过长时间古老漫长的时间形成的,具有浪漫色彩和神秘色彩,本书不仅具有趣味性还有很高的教学意义,通过学习找到乐趣,并通过乐趣加深学习。
本书是《信息管理科学博士文库》中的一种。是作者在其博士论文基础上加以修改完善而成的。详述了信息文化、信息与文化的关系、信息文化的基本概念及特征、组成 信息文化的四个子系统:物质形态、精神观念、制度规范与行为方式,并论述了信息文化影响下的四类机制:信息生产机制、信息传播机制、信息选择与利 用机制、信息行为的社会控制机制。??
《数学真有趣:3分钟学会玩数学》内容简介:数学,一旦领会,可远比魔术、游戏有趣。它不仅能够塑造灵活的思考方式,更能帮助你化繁为简、洞察事物本质,迅速分析出核心问题。在你看完《数学真有趣:3分钟学会玩数学》后,你不仅能解开那些精心设计的问题,同时还能有效锻炼思考技能,享受轻松玩数学的乐趣。
维恩图具有一系列迷人的特性,如今,它已在商业策略、创意表达、医学研究、计算机科学和理论物理学等形形色色的领域里获得了广泛的应用。基本的维恩图不仅简洁优美——由三个交叠的圆相互交叉形成八个不同的区域——而且也给我们带来了概念上的革新。由英国逻辑学家约翰·维恩设计的维恩图,在视觉上体现了复杂的逻辑学命题和代数陈述,美不胜收。雅俗共赏。本书讲述了维恩图引人入胜的发展史,人们对它的接受过程和研究的进展,以及该图形出现在基督圣像、网球和一些旗帜上的具体例子。爱德华兹不但根据历史再现了一些著名的维恩图,同时也展现了如何能把不同的形状拼接起来,从而形成在艺术上绚丽夺目、在数学上至关重要的多集合维恩图。其中包括作者自己创建的、颇有影响的“阿德莱德图”变种。
在普通工科院校,无论对力学专业本科生还是各专业硕士研究生来说,有限单元法都是一门难学的课程,对老师来说也是一门难教的课程。原因主要有两方面:一是载体的复杂性;二是预备数学知识的广泛性。 有限单元法源于力学领域,该课程以力学问题的场方程为载体,给出其有限元求解过程。力学中的重要场变量位移、应变(应力)分别是一阶、二阶张量,这就使即使简单的线弹性力学问题,其场方程也是一个复杂的需满足边界条件的偏微分方程组。 从数学的角度而言,有限单元法实质上是边值问题的数值求解方法。该数值求解方法涉及广泛的数学知识,如微分方程组积分形式的等效、矩阵理论、坐标变换及数值积分等。 目前国内适用于力学本科生及工科硕士研究生的有限单元法教材大多出自名大学,如参考文献中的[1]、[2],其特点是:一
本书系统地论述广义逆矩阵的理论、方法和应用。全书共分十章。章引进了广义逆矩阵的定义,介绍了历史发展概况。第二章从适于本书讨论的角度概述了矩阵论中的若干预备知识。接下来的六章系统地讨论了由Moore-Penrose方程所定义的各种广义逆的性质、不等式、计算方法及一些直接应用。后两章介绍广义逆在概率统计、数学规划、数值计算和网络理论等学科的应用。书后附有百余篇参考文献。 本书读者对象为高等院校数学、物理、工程、经济等有关专业的教师、高年级学生和研究生,也可供所有使用矩阵这一数学工具的广大科技工作者阅读.
作者简介: 格奥尔格 康托,伟大的德国数学家,集合论创始人。 译者简介: 陈杰(已故),北京大学数学系毕业,原内蒙古大学数学系教授,曾任系主任、内蒙古大学校长。研究方向泛函分析,集合论。 刘晓力,中国人民大学教授,内蒙古大学数学系研究生,北京大学哲学博士,研究方向为科学哲学、逻辑哲学、哥德尔思想、认知科学哲学。主持过 哥德尔思想研究 国家社科基金项目,出版《理性的生命 哥德尔思想研究》,获*人文社科类成果二等奖。翻译《逻辑人生 哥德尔传》、正在参与《哥德尔文集》5卷本翻译(商务印书馆选题计划)。目前主持国家社科基金重大项目 认知科学对当代哲学的挑战 。现任中国逻辑学会副会长、科学哲学专业委员会理事长、数学哲学专业委员会主任。
本书是一本数学趣题经典,是由Sam Loyd精心编撰,每道趣题都需要数学来解答谜题,有简单也有复杂,有些谜题是经过长时间古老漫长的时间形成的,具有浪漫色彩和神秘色彩,本书不仅具有趣味性还有很高的教学意义,通过学习找到乐趣,并通过乐趣加深学习。
数数是一项基本的生活技能,它简单到连小孩子也能学会。但人们想不到的是,现在我们所用的灵活方便的计数方式是在近代才发展起来的;而在这之前,世界上的多种文化分別创造了多样的计数方式,十进制、六十进制便是其中著名的进制,且被沿用至今。计算机的出现,是计数方式上的又一大变革,或者说新的计数方式促进了计算机技术的发展。这一切都要归功于莱布尼茨发明的二进制。数的概念和计数方式一样也在不断变化着。数是什么?我们没有的答案,因为数系一直在变化中。自然数、整数、有理数、无理数、实数、虚数、超越数、超限数,每一次数的家族的扩张,都能引发更深层次的思考,也都留下了悬而未决的问题。可见对数的认识,我们还有很长的路要走。
有两种数学:一种是复杂而困难的,一种是简明而易懂的。蚂蚁、龙虾、威尔士柯基犬和我们自己所实践的那种简单数学的能力是天生的。 我们人类有什么先天的计算技能?不考虑内置的数学诸如视觉现象,我们大多数人在一天中面对复杂的数学问题时,仍做得很好。然而,当我们面临以“数学”形式呈现的同样问题时,我们的准确性往往会下降。但是,如果我们有天生的数学能力,为什么我们还得教授数学?为什么我们大多数人仍觉得数学这么难学?是否有一般人能够做到的、可以提高数学能力的技巧或策略?我们能否从狗、猫和其他动物“做数学”中吸取经验以提高我们的数学技能? 对上述问题我们都有资格给以明确的回答。关于动物做数学的所有例子都表明,如果我们想要在这种正规的数学形式中做得更好,我们应该了解它在自然数学中是如何起
一个好的数学问题不仅蕴含着深刻的数学思想和精妙的思维技巧,而且在解决该问题的过程中能产生新的观念和理论,促进数学的发展。为了进一步拓宽广大中学生和大学低年级学生的数学视野,丰富他们的数学史知识,激发他们学习和探索数学的热情,特精心选择了这100个基本的数学问题供读者赏析。这些数学问题其实并不“基本”,它们大多是一些数学中的名题和难题,在历史上受到许多大数学家的青睐,堪称数学中的宝石和明珠,其“基本性”主要表现在叙述上的简明易懂或证明方法之初等巧妙。
1637年,费马给出了一个命题,这个看似简单的猜想,一代代数学家们煞费苦心仍无法证明,直到1994年才被英国数学家怀尔斯彻底解决。本书介绍了这358年间发生的一些生动的故事以及给予我们的启示。
本书运用类似的方法来研究数学,而书中大师们创造的不是小说或交响乐,而是定理。因此,本书不是一本典型的数学教材,没有一步一步地推导某些数学分支的发展,也没有强调数学在确定行星运行轨道、理解计算机世界,乃至结算支票等方面的应用。当然,数学在这些应用领域取得了惊人的成就,但并非这些世俗功利促使欧几里得、阿基米德或乔治·康托为数学殚精竭虑,终生不悔。他们并不认为应借功利目的为自己的工作辩解,正如莎士比亚不必解释他何以要写十四行诗,而没有写菜谱,或凡高何以要画油画,而没有画广告画一样。 我将在本书中从数学史的角度来探讨某些重要的证明和精巧的逻辑推理,并重点阐述这些定理为什么意义深远,以及数学家们是如何彻底地解决了这些紧迫的逻辑问题的。本书的每一章都包含了三个基本组成部分: 部分是历
数学展现了人类伟大的智慧,一行一数,均妙不可言。时时刻刻,数学伴我们生活左右。很多数学工具,像几何、代数、三角学的传统。甚至可上溯至古代非西方明。 《视读数学》踏寻了从古至今人类在数学发展中留下的足迹,从有趣的发明故事到数字体系、几何、代数 、微积分、无限、统计和混沌等众多理论,都娓娓道来。它见证了矛盾时怎样伴随着发展,游过了漫漫数学长河,直至今日。 本书通过深入浅出的讲解、风格多变的插图,为你打开通往数学世界的扇门,走进去,便可领悟无限的神奇与妙趣。