本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
本书主要讲述工程及物理中常用的数学方法,全书共分6章:第l章主要围绕广义函数介绍线性泛函分析的最基础的内容;第2章介绍积分变换中最重要的两种变换:Fourier变换与Laplace变换;第3章介绍二阶常微分方程的幂级数解,对常点和正则奇点附近的幂级数解的结构进行了详细的讨论,并介绍了涉及的几种重要的特殊多项式;第4章介绍稳态问题的解析方法;第5章介绍演化方程的解析方法,它们是热传导方程与波动方程的初值及初边值问题的解法;第6章介绍曲线坐标系中的分离变量法,这里只考虑球坐标系与柱坐标系中的分离变量法。全书突出广义函数在数学物理问题求解中的作用,并从微分流形的概念出发,对曲线坐标系中的微分算子给出了严格的推导,自成一休。
高等数学是工科类各专业的重要基础课程,也是硕士研究生入学考试的重点科目,其重要性日益凸显,《高等数学辅导》由*考试中心数学阅卷组长张天德老师精心编写。 本书为高等数学(同济六版)的同步辅导全书,分为教材知识全解和教材习题全解两部分: 【教材知识全解】“本节知识结构图解”将每一章、节必须掌握的概念、性质和公式进行了归纳,并以图表的形式给出;“重点及常考点分析”梳理每章节的重点及常考知识点,透彻详细的讲解了重点内容,帮助学生理解;“例题精解”归纳总结本章节涉及到的典型题型,作者基于多年教学经验,选取大量经典题型,深入讲解,分析透彻。 【教材习题详解】教材同步习题解答,供学生课内学习参考。 部分习题设有“思路探索”“方法点击”帮助学生理解和归纳总结习题。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
本书是为成人高等教育而编写的一本高等数学(微积分)教科书,内容包括:一元函数微积分、多元函数微积分、概率论简介。 高等数学(微积分)是高等教育财经类各专业的一门必修的公共基础课。通过本课程的学习,一方面,能使学生系统地获得必要的微积分基本知识及常用的数学方法;另一方面,通过各个教学环节,逐步培养学生具有比较熟练的基本运算能力和自学能力、初步抽象概括问题的能力以及一定的逻辑推理能力、用定性与定量相结合的方法处理经济问题的初步能力。为学生学习后续课程和进一步获得经济管理技术知识奠定必要的数学基础。 为了符合成人教育的实际要求,贯彻“少而精”的原则,做到突出重点、详略得当、通俗易懂,在本书的编写过程中,我们做了以下一些尝试: (1)努力突出微积分的基本思想和基本方法。本书
本教材根据**颁布的理工类本科高等数学课程教学基本要求,由从事高等数学教学的一线教师执笔编写。本教材分为上、下两册。上册包括函数、极限与连续,一元函数微分学,一元函数积分学以及常微分方程初步内容;下册包括无穷级数,空间解析几何与向量代数,多元函数微分学以及多元函数积分学等内容。每节之后配有习题,习题按照难易程度顺序给出。每册书末附有习题答案及必要的附表、附录及"数学实验"等内容。
本书是理工科学生学习高等数学、备考以及教师教学的参考书,每章的“内容提要”系统简明,“习题选解”清晰典型,“是非题题解”引人深钻教材,“综合题题解”呈现研考水平。 本书分上、下两册出版,上册内容有:函与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分应用、空间解析几佫与向量代数。
本书是与天津大学出版社出版、由相同作者主编的《高等数学》(上册)配套的辅导教材。内容包括函数、极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、向量代数与空间解析几何等7章的全部习题的解答过程及答案。每一章后都另配有复习题及自我测试题。复习题随题给出了解答过程及答案;自我测试题的解答过程及答案在书末统一给出。 本书不仅适合全日制普通高等学校本科生使用,而且适合网络高等教育、函授教育、高等职业技术教育及成人高等教育的本科生使用,也适合自学。
本书是《高等数学》教材的同步辅导书.高等数学的概念、公式、定理较抽象难懂,解题方法也多样化,难以掌握,针对这个现状,我们编写了本书. 全书分上、下两册,共l3章,以小节为单位编写.每章开篇有“本章知识体系”,包括三个板块:知识要点,重点、难点解析及典型例题和练习题.“本章知识体系”部分概述了每章的主要内容;“知识要点”部分归纳总结了每小节的主要内容,包括基本概念、性质、定理、公式及基本解题方法等;“重点、难点解析及典型例题”部分对那些重点、难点及易混淆的知识点进行了详细诠释,并精选典型例题进行分析讲解;“练习题”部分分为A,B两级,习题A主要用于培养学生对基础知识的掌握能力,习题8用于巩固提高.另外,每章配有“本章自测题”,可用于学生进行自我测试. 本书可作为理工科院校“高等