《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书是高职高专各专业通用的高等数学基础课程教材。全书共分12章,包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、常微分方程、空间解析几何与向量代数、多元函数的微分学、多元函数的积分学、无穷级数、数学软件等内容。书中每章都有学习目标和小结,每节都配有习题,每章都配有复习题,书后附有习题和复习题答案。本书中有“*”的部分内容供教师选用。 本书坚持“以应用为目的,以必需够用为度”的原则,在不破坏数学内容系统的前提下,充分考虑到高职高专教育特点和目前的教学实际,由浅人深、循序渐进,删除了许多繁琐的理论推导和证明,从而使本书显得更通俗易懂,简明扼要。
《线性代数附册 学习辅导与习题全解 同济·第七版》是与同济大学数学科学学院编《工程数学线性代数》第七版教材配套的学习辅导书,由同济大学作者团队根据教材内容和教学要求编写而成。该书在《工程数学线性代数》第六版附册(即辅导书)的基础上修改而成。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)、自测资源等多个栏目。其中“释疑解难”根据编者对课程内容的深刻理解和长期积累的丰富经验进行编写;“例题剖析与增补”充分挖掘例题的内涵,有助于读者举一反三,掌握学习方法;“习题解答”注重阐明解题的思想和方法,对全书习题给出规范解答。 《线性代数附册 学习辅导与习题全解 同济·第七版》具有相对的完整性和独立性,主要面向使用同济
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
本书是贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”的要求精神,按照国家非数学类专业数学基础课程教学指导委员会*提出的“丁科类本科数学基础课程教学基本要求”,并根据高等学校培养高级应用型人才的目标编写而成的。全书分为上、下两册。上册分七章,内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程。下册分五章,内容包括空间解析几何与向量代数、多元函数微分及其应用、重积分、曲线积分与曲面积分和无穷级数。 本书在内容上力求适用、够用、简明、通俗;在例题选择上力求全面、典型,难度循序渐进;在论述形式上则力求详尽、易懂。每节后都附有比较全面的基础性习题与综合性习题。为满足读者进行阶段性复习与自我检测的需要,在每一章末安排有自测题。书后附有
由同济大学数学系编著的《高等数学(下第3版普通高等教育十一五*规划教材)》分上下两册。 下册分4章,内容包括空间解析几何与向量代数、多元函数的微分学及其应用、多元函数的积分学及其应用、无穷级数。本书知识系统、体系结构清晰、讲解透彻、难度适宜、语言通俗、例题丰富,适合作为普通高等院校工科类、理科类(非数学专业)高等数学课程的教材使用。可供成教学院或申请升本的专科院校的学生选用,也可供相关专业人员和广大教师参考。
为了适应当前高职高专土建类专业教学改革的需要,本书以较少的篇幅涵盖了函数和极限、导数和微分及其应用、不定积分和定积分及其应用、简易的微分方程、向量与空间解析几何初步和多元函数微分法及其应用等基础理论的主要内容,共10章,每章均配有练习题和复习题(皆附有答案)。 本书选材适当,主次分明,重点突出基础性、系统性、应用性和工具性,且行文力求简明通晓,以达到易教易学、学以致用的目的。 本书可作为高职高专教育土建类专业的高等数学课程的教学用书,亦可供同层次的其他专业和各类成人高校或参加高等教育自学考试的读者作为教学和参考用书。
本书作为高职教育的知识载体,在深化教育教学改革、全面推进素质教育、培养创新人才中有着举足轻重的地位。高等数学是高职院校各专业重要的基础课程之一,随着高职教育的蓬勃发展和教学改革的不断深入,为了适应高等职业教育培养高技能人才的需要,更好地贯彻*等七部门《关于进一步加强职业教育工作的若干意见》的有关精神,在认真总结兄弟高职院校高等 数学课程的教学改革经验以及我院教师的教学经验的基础上,我们组织编写了教材《高等数学》,本书力求充分考虑高职教育的特点与要求,使其既满足高职各类专业需要,又适合高职学生的不同知识需求。 在本书的编写过程中我们遵循以下原则: 1.注重以实例引入概念,并终回到数学应用的思想,加强学生对数学的应用意识和兴趣,培养学生用数学思想消化吸收专业知识的能力。注意与实际
高等数学是高职高专院校各专业的一门基础课程,对于培养学生的逻辑思维能力、分析问题和解决问题的能力,以及提高综合素质,都有很大帮助。为了适应高职高专教育的需要,与时俱进,我们以*制定的《高职高专教育高等数学课程教学基本要求》为依据,全面贯彻“以应用为目的,以必须够用为度”的原则,并结合高职高专院校在培养技术应用型人才方面的教学特点,编写了《高等数学》。 《高等数学》精选大量具有实际背景的例题和习题,旨在启发学生的思维,培养学生的创新意识,以及运用数学工具解决实际问题的能力。全书共安排十一章,包括集合、映射与函数,极限与连续,导数与微分,微分中值定理及导数的应用,不定积分,定积分与广义积分,多元函数微分学,多元函数积分学,无穷级数,微分方程初步,Mathematica简介。全书内容叙述
杨海涛主编的《高等数学》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,并结合当前大多数本科院校学生基础和教学特点进行编写的。全书分上下两册。上册分4章,内容包括函数、极限与连续,一元函数微分学,一元函数积分学,向量代数与空间解析几何;附录包括二阶和三阶行列式简介,常用曲线方程与图像,积分表,数学建模,数学实验。下册分4章,内容包括多元函数微分学、积分学,无穷级数和微分方程,附录包括数学建模与数学实验。每册书后附有习题答案与提示。 《高等数学》知识系统、体系结构清晰、详略得当、例题丰富、语言通俗、讲解透彻、难度适中。适合作为普通高等院校工科类、理科
一、本章内容概览:对本章知识进行简要的概括。 二、本章知识图解:用网络结构图的形式揭示出本章知识点之间的有机联系,以便于学生从总体上系统地掌握本章知识体系和核心内容。 三、本节内容讲解:包含本节考查要点、教材知识全解、典型例题解析三大模块。 1.本节考查要点:对本节出现的知识点简洁而全面的梳理。 2.教材知识全解:用表格形式对每节涉及的基本概念、基本定理和公式进行系统的梳理,并指出在理解与应用基本概念、定理、公式时需注意的问题以及各类考试中经常考查的重要知识点; 3.典型例题解析:这一部分是每一节讲解中的核心内容,也是全书的核心内容。作者基于多年的教学经验和研究生入学考试试题研究经验,将该节教材内容中学生需要掌握的、考研中经常考到的重点、难点、考点归纳为一个个在考试中可能出现的基本题型,
本书是在《国务院关于大力发展职业教育的决定》精神的指导下,贯彻以服务为宗旨、以就业为导向、以学习者为中心,文化课要为提高学生入文素养服务、为学生专业学习提供支持的职业教育办学思想,结合当前职业院校的学生实际情况,在专家指导下,经过充分调研,由职业教育一线数学教师共同编写的。全套共两册,分《数学》(基础模块)、《数学》(专业模块)。 本书共13章。第1章为立体几何,第2章为复数,第3、4章为极限,第5~10章为微积分,第11、12章为线性代数,第13章为离散数学初步。 本书可与《数学》(基础模块)教材配套使用。可作为各类职业院校教材或参考书。
本书为《高等数学(同济 七版)》(下册)的配套辅导书,本书共分为5章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
本书对高等学校教材《高等数学》(第四版)全部习题做了详解,是大学工科娄学教材的一本辅助性参考书,旨在帮助学生更好地掌握数学的基本概念、基本定理,又在保证教学要求的前提下每章都配置了自测提高题,以扩大习题量,提高教学质量。 本书分上、下两册.下册习题内容包括:多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数、微分方程等内容。 该书具有习题量大,题型广泛,推理清楚,解题详细等优点,可供高等工科院校不同专业的学生使用,也可作为考研的参考读物。
本书是《高等数学(同济六版)》的配套辅导书,与教材的章节分法一致,共分12章,其中上册1~7章,下册8~12章,每章又分若干节。每节包含知识结构图及知识点梳理、典型例题、教材习题解答三大部分,然后,在每章后一节后面,还有本章知识结构及内容小结、教材总习题解答、同步自测题及参考答案。 详细解析教材上的每一道习题,提供思路和方法 对例题分题型按难度梯度设置,全面又层次分明 每章给出同步自测题及答案,自己测试学习效果 本书针对教材上的习题,每一道题目都给出详细解析,有一些题目甚至给出了多种解法,根据需要,有的还在题目解答的前面设置了【思路探索】帮助读者找到解题的思路,有的在解答的后面设置了【方法点击】,对这一类问题的解法进行总结。 本书的例题,首先分题型进行布置,同一题型的
《高等数学疑难分析与解题方法(上)》是学习高等数学课程的一本很好的辅导书。《高等数学疑难分析与解题方法(上)》与同济大学《高等数学》第六版同步,上册内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用与微分方程。 《高等数学疑难分析与解题方法(上)》的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习《高等数学疑难分析与解题方法(上)》,将完全掌握高等数学的思想与方法。 《高等数学疑难分析与解题方法(上)》还附有历年研究生入学
本书是在认真贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”的精神,并按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,根据本科院校学生的基础和特点以及一些高等院校向应用技术大学转型的新趋势而编写的。 全书分上、下两册,此为下册。唐晓文主编的《高等数学(下普通高等教育十二五规划教材)》内容包括:向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数、常微分方程,附录包括数学建模与数学实验。每章分若干节,每节都配有习题,同时每章还配有综合习题,书末附有习题的参考答案。 本书体系结构严谨、内容难度适宜、语言通俗易懂、例题习题丰富。适合作为普通高等院校(非数学专业)高等数学课程的教材使用,可供成教学院或申请升本的专
本版《高等数学》上、下册系高等院校“新高职”或“一般本科”高等数学课程使用的教材,本教材基本保留了“高等数学”课程内容的传统风格,编写时参照了《高等数学课程教学基本要求》.本书上册包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分及向量代数与空间解析几何等7章;下册包括多元函数微分学、重积分、级数、微分方程及附录中的曲线积分与曲面积分等5章。全书基本上覆盖了现行理工科类院校《高等数学》课程(本科生)的全部教学内容. 本书既适用于全日制普通高等理丁科院校及经济、管理类院校的本科生作为高等数学课程的教材,又可以作为网络高等教育、函授、高等职业技术教育或成人继续教育的大专生作高等数学课程的教科书。
《高等数学(经管类)》按照**制定的“经济管理类本科数学基础课程教学基本要求”编写,分上、下两册。此为上册,共5章内容,包括:函数、极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分及其应用等。书中每节后均配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题和复习题之后,都附有答案或提示。《高等数学(经管类)》条理清晰,论述确切;由浅入深,循序渐进;重点突出,难点分散;例题较多。典型性强;深广度恰当,便于教和学。它可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校经管类本科或专升本学生“高等数学”课程的教材,也可供从事经济管理或金融丁作的人员,或参加国家自学考试的读者,作为自学用书或参考书。本书由刘浩荣等编著。