本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
高等数学是工科类各专业的重要基础课程,也是硕士研究生入学考试的重点科目,其重要性日益凸显,《高等数学辅导》由*考试中心数学阅卷组长张天德老师精心编写。 本书为高等数学(同济六版)的同步辅导全书,分为教材知识全解和教材习题全解两部分: 【教材知识全解】“本节知识结构图解”将每一章、节必须掌握的概念、性质和公式进行了归纳,并以图表的形式给出;“重点及常考点分析”梳理每章节的重点及常考知识点,透彻详细的讲解了重点内容,帮助学生理解;“例题精解”归纳总结本章节涉及到的典型题型,作者基于多年教学经验,选取大量经典题型,深入讲解,分析透彻。 【教材习题详解】教材同步习题解答,供学生课内学习参考。 部分习题设有“思路探索”“方法点击”帮助学生理解和归纳总结习题。
本教材根据**颁布的理工类本科高等数学课程教学基本要求,由从事高等数学教学的一线教师执笔编写。本教材分为上、下两册。上册包括函数、极限与连续,一元函数微分学,一元函数积分学以及常微分方程初步内容;下册包括无穷级数,空间解析几何与向量代数,多元函数微分学以及多元函数积分学等内容。每节之后配有习题,习题按照难易程度顺序给出。每册书末附有习题答案及必要的附表、附录及"数学实验"等内容。
本书是陈光曙主编的《大学数学(理工类)》(第2版)上、下册的配套教辅.全书共分10章,各章的名称和顺序都是按照《大学数学(理工类)》第2版的结构顺序编排的,以方便学生学习时对照参考,每一章分为三个部分:一、考试内容和要求,对考试内容和考试要求进行了简要归纳,便于复习时自我检查;二、典型例题选讲,精选了一些具有代表性的例题,其中有一些选自近几年的考研试题,引导学生分析解题思路,归纳解题技巧;三、课后习题解答,对课后的全部习题,包括A类和B类,给出了详细的解答。 《面向21世界普通高等教育规划教材及学习指导:大学数学学习指导与习题详解·配第2版》内容翔实,为学生学好大学数学提供了极大的便利,既可作为选用《大学数学(理工类)》(第2版)上、下册高校学生的配套教辅,也可作为非数学专业学生考
本书是《高等数学》教材的同步辅导书.高等数学的概念、公式、定理较抽象难懂,解题方法也多样化,难以掌握,针对这个现状,我们编写了本书. 全书分上、下两册,共l3章,以小节为单位编写.每章开篇有“本章知识体系”,包括三个板块:知识要点,重点、难点解析及典型例题和练习题.“本章知识体系”部分概述了每章的主要内容;“知识要点”部分归纳总结了每小节的主要内容,包括基本概念、性质、定理、公式及基本解题方法等;“重点、难点解析及典型例题”部分对那些重点、难点及易混淆的知识点进行了详细诠释,并精选典型例题进行分析讲解;“练习题”部分分为A,B两级,习题A主要用于培养学生对基础知识的掌握能力,习题8用于巩固提高.另外,每章配有“本章自测题”,可用于学生进行自我测试. 本书可作为理工科院校“高等
高等数学是工科类各专业的重要基础课程,也是硕士研究生入学考试的重点科目,其重要性日益凸显,《高等数学辅导》由*考试中心数学阅卷组长张天德老师精心编写。 本书为高等数学(同济七版)的同步辅导全书,分为教材知识全解和教材习题全解两部分: 【教材知识全解】 本节知识结构图解 将每一章、节必须掌握的概念、性质和公式进行了归纳,并以图表的形式给出; 重点及常考点分析 梳理每章节的重点及常考知识点,透彻详细的讲解了重点内容,帮助学生理解; 例题精解 归纳总结本章节涉及到的典型题型,作者基于多年教学经验,选取大量经典题型,深入讲解,分析透彻。 【教材习题详解】教材同步习题解答,供学生课内学习参考。部分习题设有 思路探索 方法点击 帮助学生理解和归纳总结习题。
本书是在认真贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”的精神,并按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,根据本科院校学生的基础和特点以及一些高等院校向应用技术大学转型的新趋势而编写的。 全书分上、下两册,此为下册。唐晓文主编的《高等数学(下普通高等教育十二五规划教材)》内容包括:向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数、常微分方程,附录包括数学建模与数学实验。每章分若干节,每节都配有习题,同时每章还配有综合习题,书末附有习题的参考答案。 本书体系结构严谨、内容难度适宜、语言通俗易懂、例题习题丰富。适合作为普通高等院校(非数学专业)高等数学课程的教材使用,可供成教学院或申请升本的专
本书作为高职教育的知识载体,在深化教育教学改革、全面推进素质教育、培养创新人才中有着举足轻重的地位。高等数学是高职院校各专业重要的基础课程之一,随着高职教育的蓬勃发展和教学改革的不断深入,为了适应高等职业教育培养高技能人才的需要,更好地贯彻*等七部门《关于进一步加强职业教育工作的若干意见》的有关精神,在认真总结兄弟高职院校高等 数学课程的教学改革经验以及我院教师的教学经验的基础上,我们组织编写了教材《高等数学》,本书力求充分考虑高职教育的特点与要求,使其既满足高职各类专业需要,又适合高职学生的不同知识需求。 在本书的编写过程中我们遵循以下原则: 1.注重以实例引入概念,并终回到数学应用的思想,加强学生对数学的应用意识和兴趣,培养学生用数学思想消化吸收专业知识的能力。注意与实际
本书是2l世纪高等学校数学系列教材之一,全书遵循高等教育规律,突出高等职业教育的特点, 注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章, 内容包括: 函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。 本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。 与本书配套的辅助教材有《高等数学练习册》、 《高等数学学习指导》。本书可以作为高职高专各类专业通用数学教材,也可以作为成人高校、网络教育及相关科技人员的
朱开永、王升瑞主编的《高等数学(上)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为上册。内容包含了函数与极限、一元函数微分学以及一元函数积分学。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,必须够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以作为高等工程技术教育、成人教育的本科教材
《全国高等教育自学考试创新型试卷系列:高等数学(一)阶梯式突破试卷》是由编者集专家的研究而组成的一套针对性训练的试卷。我们组织多所高等院校长期从事高等自学考试研究、命题、评卷的著名专家、教授,严格按照*考试大纲,编写了这套《高等数学(一)阶梯式突破试卷》。 本套试卷知识点涵盖全面,内容设计合理,实用而高效。考生可以利用本套试卷检验自己日常学习的效果,也可以在考前进行模拟演练,对所学知识进行查漏补缺。
本书为《高等数学(同济 七版)》(下册)的配套辅导书,本书共分为5章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
本书是贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”的要求精神,按照国家非数学类专业数学基础课程教学指导委员会*提出的“丁科类本科数学基础课程教学基本要求”,并根据高等学校培养高级应用型人才的目标编写而成的。全书分为上、下两册。上册分七章,内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程。下册分五章,内容包括空间解析几何与向量代数、多元函数微分及其应用、重积分、曲线积分与曲面积分和无穷级数。 本书在内容上力求适用、够用、简明、通俗;在例题选择上力求全面、典型,难度循序渐进;在论述形式上则力求详尽、易懂。每节后都附有比较全面的基础性习题与综合性习题。为满足读者进行阶段性复习与自我检测的需要,在每一章末安排有自测题。书后附有
高等数学课程是所有工科学生必修的基础理论课程。上海同济大学应用数学系主编的《高等数学》第五版以体系完整,层次清晰,深入浅出的特点成为高等数学这门课程的经典教材。 为了帮助学生能更好地学好这门课程,本书配合上述教材,对教材的主要内容、基本公式进行了知识点归纳,并对教材课后的习题以及总习题进行了全面解答,在解题过程中提供了相关的解题思路,有助于学生掌握解题技巧。此外,在每章中提供了同步自测题和综合题解析,为学生有针对性地巩固和提高自己的解题能力提供了更多的练习,其中部分题目出自历年考试中出现的全真题,并附有详细解答。 本书可供在各类高等学校中学习高等数学课程的学生以及自学成材的学生参考使用。
《线性代数附册 学习辅导与习题全解 同济·第七版》是与同济大学数学科学学院编《工程数学线性代数》第七版教材配套的学习辅导书,由同济大学作者团队根据教材内容和教学要求编写而成。该书在《工程数学线性代数》第六版附册(即辅导书)的基础上修改而成。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)、自测资源等多个栏目。其中“释疑解难”根据编者对课程内容的深刻理解和长期积累的丰富经验进行编写;“例题剖析与增补”充分挖掘例题的内涵,有助于读者举一反三,掌握学习方法;“习题解答”注重阐明解题的思想和方法,对全书习题给出规范解答。 《线性代数附册 学习辅导与习题全解 同济·第七版》具有相对的完整性和独立性,主要面向使用同济
《高等数学(经管类)》按照**制定的“经济管理类本科数学基础课程教学基本要求”编写,分上、下两册。此为上册,共5章内容,包括:函数、极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分及其应用等。书中每节后均配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题和复习题之后,都附有答案或提示。《高等数学(经管类)》条理清晰,论述确切;由浅入深,循序渐进;重点突出,难点分散;例题较多。典型性强;深广度恰当,便于教和学。它可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校经管类本科或专升本学生“高等数学”课程的教材,也可供从事经济管理或金融丁作的人员,或参加国家自学考试的读者,作为自学用书或参考书。本书由刘浩荣等编著。