本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
《线性代数习题精选精解》 本书涵盖了线性代数的知识要点、典型习题、考研真题以及难度稍大的综合习题,汇集了线性代数的基本解题思路、方法和技巧,融入了编者多年讲授线性代数的经验和体会。相信本书会成为读者学习线性代数的良师益友。本书共分六章,每章分若干节,在章节划分和内容设置上与近期新版硕士研究生入学考试大纲接近一致。每章除很后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念、定理和公式进行了系统梳理; 基本题型:对每节常见的基本题型进行了归纳总结,便于学生理解、掌握,可作为学生学习线性代数课的同步练习或习题使用,有利于提高学生的解题能力和数学思维水平。每章很后一节是综合提高题型。这一节的题目综合性较强、有一定难度,特别是有相当一部分是考研真题。通过本节的学习可以提高
本书系统地阐述了以状态空间方法为主的线性系统的时间域理论。全书共12章:第1章介绍与本书密切相关的一些数学基础知识;第2章介绍线性系统的数学描述;第3-5章阐述线性系统的分析理论,分别介绍线性系统的运动分析、能控性和能观性分析以及稳定性分析;第6-10章阐述线性系统的设计理论,分别介绍线性系统的极点配置和特征结构配置、镇定与渐近跟踪、线性二次型最优控制、解耦控制、状态观测器等设计问题;第11章概括性地介绍离散线性系统理论;第12章介绍鲁棒性的概念和几个基本的鲁棒控制问题。
《直来直去的微积分》从常识性的平凡道理出发,不用极限概念也不用无穷小概念,直截了当地定义了函数的导数,证明了导数的常用性质;定义了定积分,推出了微积分基本定理。严谨而不失直观的推理,颠覆了微积分必须以极限概念为基础的传统观点。全书共18章,前10章用作者发现的新方法构建了一元微积分的逻辑框架;后8章阐述新方法与传统体系的关系和接轨的方案,以及一些重要的微积分知识。《直来直去的微积分》化解了传统微积分教学的若干很大难点,为建立高中和大学的微积分新体系描绘了蓝图。《直来直去的微积分》可供中学和大学的数学教师、需要学习高等数学的大学生、数学爱好者、数学研究者,以及数学教育的研究者参考。
本书是我国著名数学家熊庆来先生的一本代表作,全书共分十三章,主要介绍了高等代数中的基础知识及内容,同时配以相应的习题,以供读者更好的理解。本书适合大中学师生及数学爱好者参考阅读。
本书主讲高中数学常考的十四大版块中的“导数”部分,系统地分析了高中数学各版块中的重点和难点内容,共归纳了26个导数压轴的经典题型与方法分析,每节内容由知识点、经典题型、方法分析、重点和难点思路分析以及拓展技巧结论组成。本书为高中学生提供了系统的高考数学复习方案以及解决经典题型、重点和难点问题的应对策略。本书还侧重于方法、技巧和题型的总结与归纳。 本书适合高二、高三的学生学习使用,希望通过学习本书能帮助同学们更好地解答导数压轴题。
本书主讲高中数学常考的十四大版块中的“导数”部分,系统地分析了高中数学各版块中的重点和难点内容,共归纳了26个导数压轴的经典题型与方法分析,每节内容由知识点、经典题型、方法分析、重点和难点思路分析以及拓展技巧结论组成。本书为高中学生提供了系统的高考数学复习方案以及解决经典题型、重点和难点问题的应对策略。本书还侧重于方法、技巧和题型的总结与归纳。 本书适合高二、高三的学生学习使用,希望通过学习本书能帮助同学们更好地解答导数压轴题。
。
本书是为工科院校学生学习高等数学,打好数学基础,提升学生参加期末、考研、竞赛等成绩而编写的教学辅导教材,内容所涉猎试题覆盖了高等数学全部知识点。全书共有五部分,约1200多道试题。以阶段性测试(10套)、期末考试(10套)、考研数学一(10套)、陕西省竞赛(10套)、全国预决赛(25套)试题及其详细解析的形式呈现。试题题型全面,难度梯次分明。试题解析部分给出各类试题的详细完整的解答步骤,意在建立知识点之间的内在联系,体现了利用不同知识点解决同一问题的一题多解思路和技巧,从而促进学习者对所学知识点的全面理解和灵活运用。本书不仅适合不同层次学生对课程学习和备考的需求,而且是老师课程教学的参考题库,也是学生考研和参加数学竞赛备考复习的指导用书。
。