本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
本书是吉米多维奇主编的又一本极具影响的习题集,它适合工科院校高等数学课程,自1959年首次出版以来,已经修订再版多次,本书译自*2006年俄文版。 全书包含三千多道习题和三百多道例题,几乎涵盖了工科院校高等数学课程(除解析几何处)的所有内容,并对课程中要求牢固掌握的重要章节(求极限、微分法、函数作图、积分法、定积分的应用、级数和微分方程的解法)给了特别关注。除此之外,书中还包括场论,傅里叶方法和近似计算的习题。
本书是为面向21世纪课程教材、普通高等教育“九五”*重点教材《工科数学分析基础》(王绵森、马知恩主编)而编写的,可以作为普通高等学校高等数学和微积分课程的教学辅导书,是在校大学生和任课教师的参考书。本书分为上、下两册,上册内容包括映射、极限、连续,一元函数微分学及其应用,一元函数的积分学及其应用,无穷级数。本书对《工科数学分析基础》的知识要点作了提纲挈领式的归纳,对习题作了全面的解答(题前标有符号“·”),并补充了部分典型例题,这些对读者提高数学素养和知识内涵、提高数学思维和运算能力是十分有益的。本书是使每个读者都能感受到开卷有益的一本好书。
本书共分七章:绪论,初等积分法,线性方程组与方程,常系数线性微分方程与方程组,一般理论,稳定性初步,一阶偏微分方程。为了巩固所学知识,每章均配有一定量的习题,书后附有部分习题答案与提示。 本书可作为高等院校数学系本科学生的教材,也可供工科学生及工程技术人员参考。
非线性色散方程:局部和整体分析(影印版)
《数学分析的方法与题解》是一本与众不同的教和学的参考书,基本上按照现行数学分析教材的章节逐一对应编写的。每一节包括内容提要和例题两部分,分析问题思路清晰,不含含糊糊;解题过程条理清楚,说理透彻,既不生搬硬套,也不牵强附会,通过对大量典型例题的分析和求解,提示数学分析的方法、解题规律和技巧。尤其提出了“不求没缺点,而应有特色”的目标,给出了一些原创性问题,有益于启迪思维、培养创新能力。 本书可作为理工科院校本科生学习数学分析的学习辅导书及数学分析习题课的参考书,也可作为考研的数学分析复习指南。
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其*发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课教材和研究生专业基础课教材,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。
本书是学习数学分析课程的一本极好的辅导书,本书的内容与一般的数学分析教材同步,分为上、下两册。本册内容包括级数、函数项级数与幂级数、傅里叶级数、多元函数微分学、隐函数定理及其应用、向量函数微分学、重积分及曲线积分与曲面积分。本书用大量篇幅详尽地分析和解答了在学习数学分析课程中可能出现的概念和方法上的种种疑难问题,用众多典型的、多样的例题为读者诠释概念、演绎技巧、举证方法,力图使读者通过学习本书能领会数学分析思想的精髓,掌握数学分析的方法,熟悉解决问题的途径与技巧。它将使你体会“开卷有益”这句名言。 相信本书将成为你的良师益友。欢迎你选用本系列丛书。
本书包含七章。章从Lebesgue测度和Lebesgue积分出发介绍抽象测度和抽象积分,以及可测函数的连续性;第二章介绍LP空问及其可分性和对偶空间,以及用连续函数逼近LP空间元素;第三章介绍Hilbert空间上线性变换的表示,Hilbert空间中的规范正交系;作为例子,本章还介绍了三角级数,它是逼近论、小波分析的基础,另外,作为Riesz表示定理的应用之一,这里还介绍了广义测度的有关知识(这部分可作为选讲内容);第四章主要讨论n维欧氏空间上的Fourier变换的概念及基本性质,以及Fourier变换在偏微分方程中的应用;第五章微分学是将数学分析中函数的微分概念推广到映射和测度中去,分别介绍了映射的导数、偏导数及高阶导数和测度的导数;第六章介绍Banach空间中的五大定理;后一章介绍了广义函数。
本书是学习数学分析课程的一本极好的指导书。本书的编写顺序与一般的数学教科书同步,本册内容包括级数、函数项级数与幂级数、傅里叶级数、多元函数微分学、隐函数定理及应用、向量函数微分学、重积分、曲线积分与曲面积分。读者可以通过学习它循序渐进地理解和掌握数学分析的概念和方法。本书在归纳内容、释疑解难的基础上,用大量、全面的例题为读者诠释概念、演绎技巧、举证方法,使读者可以更好地融会知识、理解概念、熟悉技巧和掌握方法。因此,读者有必要认真学习本书,通过它化教科书上的抽象概念为自己的切实有用的知识。 希望本书能成为你的良师益友,欢迎你选用本系列丛书。
萨奥尔编著的《数值分析》介绍了现代数值分析中的重要概念与方法,包括线性和非线性方程与方程组的求解、数值微分和积分、插值、最小二乘、常微分方程与偏微分方程的求解、特征值与奇异值的计算、随机数与压缩方法,以及优化技术。全书穿插介绍了收敛、复杂度、条件、压缩和正交这5个数值分析中最重要的概念。 本书内容广泛,实例丰富,可作为自然科学、工程技术、计算机科学、数学、金融等专业人员进行教学和研究的参考书。
《数学分析解题精讲》是编者(徐新亚)30余年数学分析教学和考研辅导的经验总结,全书共选入600 多个例题和200多个课后习题,它们基本上都是近年来国内各高校数学专业招收硕士研究生时的入学试题,涵盖了数学分析考研大纲要求的所有内容,精简实用、针对性强,完全能够满足绝大多数数学专业学生的考研需要。 如何解题是《数学分析解题精讲》的主旨,但又决不是为解题而解题.对书中所列的全部例题,注重分析题意,寻找突破点,对许多典型题型进行解题思路分析,力图发现常见的规律,以求积累解题技巧,实现解题能力的升华。 《数学分析解题精讲》既可以作为数学专业学生进行考研辅导时的教科书,也适合学生自学。
《数学分析选讲》分为上、下两册.本书为上册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书.目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。 本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学.每章由基本概念分析和解题方法分析两部分组成.前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。 本书对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用.所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平.本书对从事数学分析和高等
《数学分析选讲》分为上、下两册。本书为下册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书。目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学。每章由基本概念分析和解题方法分析两部分组成。前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。《数学分析选讲》对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用。所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平。本书对从事数学分析和高
本书比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是本书在数学思想方面的体现。 本书章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出普遍的表示形式。
随着近几年大学连续扩招,大学生的就业压力越来越大,社会对高层次、高素质人才的需求倾向也逐步加大。这就要求大学生在学习生活中,必须越来越注重素质的培养和实际能力的提高。因此,大学生对各种基础教材、专业理论教材、教学辅导书、考试用书、工具书等学习用书的需求急剧增加。有鉴于此,我们组织全国多所知名重点大学的专家和教授,依据*教材,编写了这套大学重点科目辅导系列丛书。本套丛书涉及的学科有数学、物理、力学、化学、电子、电气工程、工程、经济等,基本上覆盖所涉及专业的主干课程和基础课程。我们在编写此系列图书时,一方面坚持对学科內容的覆盖性;另一方面注重因材施教,准确把握不同层次学生的学习要求。 作为一种辅导性教材,本套丛书力求做到有的放矢,恰到好处。体例设计具有如下特色: 1.知识点概括:
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
上海交通大学数学系是全国工科数学教学基地, 数学教学成绩一直以优秀闻名全国。上海交通大学数 学系编写的《数学分析试题分析与解答(新核心理工 基础教材普通高等教育十二五重点规划教材配套辅导 )》选编了该校近年的24份本科生数学分析试卷,对 每一道试题均作详解,并有题前分析和题后点评,指 明解题思路和方法以及学生在解题过程中常犯的错误 ,有的题还给出多种解法。 本书可作为高等院校《数学分析》课程师生的教 学辅导用书,也可供考研者参考。
作为一种辅导性教材,本套丛书力求做到有的放矢,恰到好处。体例设计具有如下特色: 1.知识点概括:每章首先介绍基本理论与方法,尽量避免使用抽象方法,尽可能用简单的方法,做到深入浅出。内容按照基础知识点、重要知识点和疑难知识点进行划分,方便学生对整章内容进行整体性地把握。 2.易考题型解析及解题技巧总结:在此部分,我们列举了大量难度不等的易考常考题型,并针对每种题型给出解题思路和解题技巧,对学生的学习有着很强的启发性,能够帮助学生开阔思路、活跃思维、举一反三、触类旁通。书中例题都非常新颖,有着实际工程应用背景,很有参考价值,一改国内教材习题大同小异的弊病。 3.课后习题详解:完全针对*经典教材*版本的课后习题给予解答。解答过程中力求做到概念清晰、步骤完整、数据准确、附图齐全,必要时给