本书全面地介绍密度泛函理论的基本内容,共分8章。第1章泛函的微积分,提供所需要的泛函的数学基础知识。第2章量子化学基础,补充在一般物理化学以上的量子化学基础知识。第3章量子力学的密度泛函理论,从霍亨堡和库恩的两个定理出发,着重讨论库恩-沈方法,并介绍交换相关能泛函模型,主要采用局部密度近似,包括普遍化梯度近似,接着进入计算。最后是应用举例。第4章统计力学基础,补充在一般物理化学以上的统计力学的基础知识。第5章统计力学的密度泛函理论,首先建立两个生成函数,巨势泛函和内在自由能泛函,并引出巨势极小原理,形成基本框架。对于自恰场理论,由于也是研究非均匀流体的重要手段,因此也做简要讨论。第6章内在自由能泛函模型,详细讨论局部密度近似,包括普遍化梯度近似。针对宏观系统的特点,还进一步介绍更符合
Sincethepublicationofmylecturenotes,FunctionalDifferentialEquationsintheAppliedMathematicalSciencesseries,manynewdevelopmentshaveoccurred.Asaconsequence,itwasdecidednottomakeafewcorrectionsandadditionsforasecondeditionofthosenotes,buttopresentamoreprehensivetheory.Thepresentworkattemptstoconsolidatethoseelementsofthetheorywhichhavestabilizedandalsotoincluderecentdirectionsofresearch.
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
The book is suitable for a one-year course at the advanced undergraduate level. By omitting certain chapters, a one semester course can be based on it. For instance, if the students already have a good knowledge of partial differentiation and the elementary topology of E', then substantial parts of Chapters 4, 5, 7, and 8 can be covered in a semester. Some knowledge of linear algebra is presumed. However, results from linear algebra are reviewed as needed (in some cases without proof).