编辑手记 苏联数学进展系列 由不同数学领域的一名或多名资深专家作为主编,内容包含来自俄罗斯的世界*数学家的论文.此系列书籍在21卷之后作为 美国数学协会译从2 的子系列出版,后更名为 苏联数学进展系列 . 本书为此系列的第10卷《偏徼分方程全局吸引子的特性》. 演化方程的全局吸引子是一组描述动态系统在非常大的时间值内的行为轨迹.值得注意的是,偏微分方程组的吸引子点是某个函数空间的一个元素;这一点是空间变量的函数,也取决于方程中出现的参数对于带有耗散的物理系统的任何有限制的系统(ast ),被描述为:与存在于吸引子中的轨迹相对应的演化方程.从物理的角度来看,这种制度往往很有意义.例如,根据 Landau和 Ruelle-Takens的猜想,正是 Navier-Stokes系统的非平凡动力学确定了湍流的存在.因此,获得关于吸引子的尽可能完整的信息无论是从
微分几何讲义(修订版)
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第Ⅱ卷应用英文版)(精)》由Vladimir V.Uchaikin著,本书的第Ⅰ卷介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而义清晰的分析与介绍。第Ⅱ卷是应用篇,讲述了分数维微积分在物理学中的实际的应用。在湍流与半导体、等离子与热力学、力学与量子光学、纳米物理学与天体物理学等学科应用方面,本书给读者展示一个全新的处理方式和新锐的视角。 本书适合于对概率和统计、数学建模和数值模拟方面感兴趣
本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述 维微分方程组的解的渐近性状和李雅普诺夫(A.M.Lyapunov)式稳定性的解析判定方法。第四章讲述n维微分方程组的研究。第五章讲述由苏联学者马尔科夫(A.A.Markov)引入作为度量空间自身变换的单参数群的一般动力体系的理论。第六章讲述具有不变测度的一般动力体系的度量理论。 本书适合高等院校师生及数学爱好者研读。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。